
A Sequent Calculus for a First-order Dynamic Logic

with Trace Modalities for Promela+

Florian Rabe1, Steffen Schlager2, and Peter H. Schmitt2

1 International University Bremen
2 Universität Karlsruhe

Abstract. We introduce the first-order dynamic logic DLP for Promela+, a language
subsuming the modelling language Promela of the Spin model checker. In DLP trace
modalities can be used to reason about the temporal properties of programs. The
definition of DLP includes a formal semantics of the Promela+ language. A sound and
relatively complete sequent calculus is given, which allows deductive theorem proving
for Promela+. In contrast to the Spin model checker for Promela, this calculus allows to
verify infinite state models. To demonstrate the usefulness of our approach we present
two examples that cannot be handled with Spin but that can be derived in our calculus.

1 DLP—Dynamic Logic for Promela+

Dynamic Logic (DL) [4, 5] is an extension of first-order predicate logic with modalities [π]F
and 〈π〉F for each program π of some programming language and DL formula F . DL allows to
reason about the input/output behaviour of a program. However, sometimes it is desirable to
reason about intermediate states of a program as well. This becomes possible if DL is extended
with additional, so-called trace modalities [[π]]F , [〈π〉]F , 〈〈π〉〉F , and 〈[π]〉F , as shown in [1].

The programming language we consider in this paper is Promela+ whose syntax is essen-
tially the same as of Promela [7], the modelling language of the model checker Spin [6]. Besides
the usual constructs like assignments, loops, etc. Promela offers dynamic process creation, syn-
chronous and asynchronous communication through channels, and non-deterministic choice.
Due to lack of space we cannot present the formal syntax here.

The semantic domain of DL are extended Kripke structures. The states are first-order
structures (all sharing the same universe) and for each elementary command there is one
transition relation reflecting the semantics of the considered programming language. A trace
of a program π for an initial state s is the (possibly infinite) sequence of states of a possible
run of π starting in s. Note, that for non-deterministic languages like Promela the semantics
of a program is a set of traces for each initial state.

In order to reason about non-terminating programs we apply induction on the length of
the traces. This requires the introduction of restricted programs πt for a program π and a
(positive) integer term t.1 Assuming S is the set of traces of π and n is the denotation of t,
the intended semantics of πt is the set of all initial segments of traces in S whose length is at
most n.

Formula [π]F (〈π〉F ) holds in state s iff for all (there exists a) possible end state(s) of π

when started in s the formula F holds. Formula [[π]]F ([〈π〉]F ) holds iff for all (there exists

a) state(s) on all traces of π the formula F holds. Formula 〈[π]〉F (〈〈π〉〉F ) holds iff there
exists a trace of π on which for all (there exists a) state(s) F holds. Formulas not containing
modalities are interpreted as usual.

For an informal semantics of Promela programs we refer to [7, 6]. A detailed formal se-
mantics Promela+ and therefore of Promela and can be found in [8]. In contrast to Promela,
Promela+ is not restricted to finite models. E.g., it is possible to create an unbounded number
of processes, integer variables are not range restricted, and, most important, the initial state
of a system may be (partially) unknown.

1 These definitions are not present in [8], but we intend to publish them in an upcoming paper.



2 A Sequent Calculus for DLP

We can only present two very characteristic rules as examples (as usual, the semantics of a
rule is that the validity of the premisses above the line implies the validity of the conclusion):

ex(c) ⊢ F ex(c) ⊢ eff(c)[[remProg(π, i)]]F

⊢ [[i : π]]F

The purpose of this rule is to execute the first command c of the i-th process of π. Here
i is a tag specifying that the i-th process of π has been non-deterministically scheduled for
execution. This rule can only be applied if scheduling rules have been applied before that have
introduced all possible tags, thus spawning branches in the proof for every possible scheduling
decision. Also, if c is a composed command other rules have to be applied first decomposing
it into elementary commands. This is necessary since only elementary commands have a
well-defined effect on the global state (due to the non-deterministic interleaving of processes).

While tags are syntactic entities of DLP, ex, eff, and remProg are meta level abbreviations
that allow to state several rules in one compact rule scheme: ex(c) is a first-order formula that
expresses the executability of c, eff(c) expresses the state transitions caused by the execution
of c and modifies the state in which the following formula is to be evaluated, and remProg(π, i)
is the program that remains to be executed after c has been executed. These abbreviations
must be defined for all elementary commands c, e.g., if c starts a new process, remProg(π, i)
removes c from π and adds the new process instance to π.

Having the intuitive meaning of these functions in mind it is easy to understand the rule:
If c is executable, the formula [[i : π]]F , which states that F holds in all states on all traces,
is reduced to F , which states that F holds in the current state, and eff(c)[[remProg(π, i)]]F ,
which states that F holds in all states on all traces that arise if the remaining program is
executed in the next state (characterised by the state update eff(c)). If c is not executable,
the proof goal is closed immediately.

Secondly, the following is an example for a rule that introduces the programs πt in order
to use induction on t:

⊢ ∀t : int.t ≥ 1 → [[πt]]F

⊢ [[π]]F

2.1 Soundness and Relative Completeness

Soundness has to be shown separately for each rule. The proofs are technical, but not difficult.
They can be found in [8].

The basic idea behind the (relative) completeness proof is to show by Gödelisation that
DLP is not more expressive than first-order logic with arithmetic (see [8] for details). Relative
completeness means that all valid formulas could be derived in the calculus if an oracle
for arithmetic was available, i.e., a rule scheme providing all valid arithmetic formulas as
axioms. Of course, in reality such a rule cannot exist but this is not harmful to “practical
completeness”. Rule sets for arithmetic are available, which—as experience shows—allow to
derive all valid first-order formulas that occur during the verification of actual programs.
Moreover, many arithmetic formulas can be automatically discharged by external decision
procedures like CVC [9] and the Simplify tool, which is part of ESC/Java [3].

2.2 Examples

We now present two examples. Although they are extremely simple they cannot be verified
using the model checker Spin, whereas their deductive verification can be done in a standard
way. This shows the fundamental advantages of the deductive approach.

For these examples, note that in Promela do. . . od denotes a guarded non-deterministic
choice, that is repeated until a break is encountered. Consider the program π defined as



do

:: skip ;

:: x=0; break;

od

We now want to verify that x
.
= 0 holds in all possible final states of π. In DLP this property

is expressed as [π]x
.
= 0. Spin cannot handle this because infinitely many and arbitrarily long

runs exist for this model. However, using induction on t in πt this model can be easily verified
deductively.

For the second example let π be defined as

do

:: x != 0; x=x−1

:: else ; break

od

where x is decreased as long as it is non-zero, and if x is zero, the loop terminates. We want to
prove validity of the formula ∀x : int.x ≥ 0 → [π]x

.
= 0 expressing that for every initial value

of x greater than 0 and all terminating runs x
.
= 0 holds in the final state. This property

cannot be verified with Spin since it does not allow arbitrary initial states. However, Spin can
easily verify a similar property with a fixed value for x.

While arbitrary initial states are not provided for in Promela they naturally occur in many
realistic scenarios, e.g., when a program is started in the final state of another program. The
initial state of a DLP verification is always arbitrary. If only certain initial states are to be
considered restrictions must be included in the property to be verified.

The formal proof of this example is done by induction on x and can be found in [8]. Note
that the induction hypothesis has to be specified interactively which can be very hard to find
in practice.

3 Related Work and Conclusions

There are some approaches to define the semantics of Promela formally, most notably [2]. But
the semantics that is induced by our semantics for Promela+ is by far the most comprehensive
one. Relative to this semantics we introduced a calculus that allows deductive theorem proving
for Promela. No previous work in this direction exists for Promela or other non-deterministic
multi-process languages.

The given examples show that DLP increases the set of verifiable Promela models signifi-
cantly. As a minor drawback DLP has only six temporal operators to make statements about
traces whereas Spin allows to specify arbitrary LTL formulas. E.g., in order to express the
property “A holds for a while, and then B holds forever” DLP must be extended by a specific
modality whereas this can be easily expressed in LTL.

References

1. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with trace modalities.
In International Joint Conference on Automated Reasoning, volume 2083 of LNCS, pages 626–641,
2001.

2. M. del Mar Gallardo, P. Merino, and E. Pimentel. A generalized semantics of Promela for abstract
model checking. Formal Aspects of Computing, 16(3):166–193, 2004.

3. ESC/Java (Extended Static Checking for Java). http://research.compaq.com/SRC/esc/.
4. D. Harel. First-order Dynamic Logic, volume 68 of LNCS. Springer, 1979.
5. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
6. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.
7. Promela Language Reference. Available at http://spinroot.com/spin/Man/promela.html.
8. F. Rabe. A dynamic logic with temporal operators for Promela. Master’s thesis, Universität

Karlsruhe, 2004. Available online at http://i12www.ira.uka.de/~frabe/DLTP.pdf.
9. A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating Validity Checker. In E. Brinksma

and K. G. Larsen, editors, 14th International Conference on Computer Aided Verification (CA
V), volume 2404 of Lecture Notes in Computer Science, pages 500–504. Springer-Verlag, 2002.


