
3

Dynamic Logic

by

Bernhard Beckert

Vladimir Klebanov

Steffen Schlager

3.1 Introduction

In the previous chapter, we have introduced a variant of classical predicate
logic that has a rich type system and a sequent calculus for that logic. This
predicate logic can easily be used to describe and reason about data structures,
the relations between objects, the values of variables—in short: about the
states of (JAVA) programs.

Now, we extend the logic and the calculus such that we can describe and
reason about the behaviour of programs, which requires to consider not just
one but several program states. As a trivial example, consider the JAVA state-
ment x++;. We want to be able to express that this statement, when started
in a state where x is zero, terminates in a state where x is one.

We use an instance of dynamic logic (DL) [Harel, 1984, Harel et al., 2000,
Kozen and Tiuryn, 1990, Pratt, 1977] as the logical basis of the KeY system’s
software verification component [Beckert, 2001]. The principle of DL is the
formulation of statements about program behaviour by integrating programs
and formulae within a single language. To this end, the operators (modalities)
〈p〉 and [p] can be used in formulae, where p can be any sequence of legal JAVA

CARD statements (i.e., DL is a multi-modal logic). These operators that refer
to the final state of p can be placed in front of any formula. The formula
〈p〉φ expresses that the program p terminates in a state in which φ holds,
while [p]φ does not demand termination and expresses that if p terminates,
then φ holds in the final state. For example, “when started in a state where
x is zero, x++; terminates in a state where x is one” can in DL be expressed
as x

.
= 0 −> 〈x++〉(x

.
= 1).

In general, there can be more than one final state because the programs
can be non-deterministic; but here, since JAVA CARD programs are determin-
istic, there is exactly one such state (if p terminates normally, i.e., does not
terminate abruptly due to an uncaught exception) or there is no such state
(if p does not terminate or terminates abruptly). “Deterministic” here means
that a program, for the same initial state and the some inputs, always has the



70 3 Dynamic Logic

same behaviour—in particular, the same final state (if it terminates) and the
same outputs. When we do not (exactly) know what the initial state resp. the
inputs are, we may not know what (exactly) the behaviour is. But that does
not contradict determinism of the programming language JAVA CARD.

Deduction in DL, and in particular in JAVA CARD DL is based on symbolic
program execution and simple program transformations and is, thus, close to
a programmer’s understanding of JAVA (⇒ Sect. 3.4.5).

Dynamic Logic and Hoare Logic

Dynamic logic can be seen as an extension of Hoare logic. The DL formula
φ −> [p]ψ is similar to the Hoare triple {φ}p{ψ}. But in contrast to Hoare
logic, the set of formulae of DL is closed under the usual logical operators:
In Hoare logic, the formulae φ and ψ are pure first-order formulae, whereas
in DL they can contain programs.

DL allows to involve programs in the descriptions φ resp. ψ of states. For
example, using a program, it is easy to specify that a data structure is not
cyclic, which is impossible in pure first-order logic. Also, all JAVA constructs
are available in our DL for the description of states (including while loops
and recursion). It is, therefore, not necessary to define an abstract data type
state and to represent states as terms of that type; instead DL formulae
can be used to give a (partial) description of states, which is a more flexible
technique and allows to concentrate on the relevant properties of a state.

Structure of this Chapter

The structure of this chapter is similar to that of the chapter on first-order
logic. We first define syntax and semantics of our JAVA CARD dynamic logic in
Sections 3.2 and 3.3. Then, in Section 3.4–3.9, we present the JAVA CARD DL
calculus, which is used in the KeY system for verifying JAVA CARD programs.
Section 3.4 gives an overview, while Sect. 3.5–3.9 describe the main com-
ponents of the calculus: non-program rules (Sect. 3.5), rules for reducing
JAVA CARD programs to combinations of state updates and case distinctions
(Sect. 3.6), rules for handling loops with the help of loop invariants (Sect. 3.7),
rules for handling method calls with the help of method contracts (Sect. 3.8),
and the simplification and normalisation of state updates (Sect. 3.9). Finally,
Sect. 3.10 discusses related work.

In addition, some important aspects of JAVA CARD DL and the calculus
are discussed in other chapters of this book, including the first-order part
(Chapter 2), proof construction and search (Chapter 4), induction (Chap-
ter 11), handling integers (Chapter 12), and handling the particularities of
JAVA CARD such as JAVA CARD’s transaction mechanism (Chapter 9). An in-
troduction to using the implementation of the calculus in the KeY system is
given in Chapter 10.



3.2 Syntax 71

3.2 Syntax

In general, a dynamic logic is constructed by extending some non-dynamic
logic with parameterised modal operators 〈p〉 and [p] for every legal program p
of some programming language.

In our case, the non-dynamic base logic is the typed first-order predicate
logic described in Chapter 2. Not surprisingly, the programming language we
consider is JAVA CARD, i.e., the programs p within the modal operators are
in our case JAVA CARD programs. The logic we define in this section is called
JAVA CARD Dynamic Logic or, for short, JAVA CARD DL.

The structure of this section follows the structure of Chapter 2. Sect. 3.2.1
defines the notions of type hierarchy and signature for JAVA CARD DL. How-
ever, we are more restrictive here than in the corresponding definitions of
Chapter 2 (Def. 2.1 and 2.8) since we want the JAVA CARD DL type hierarchy
to reflect the type hierarchy of JAVA CARD. A JAVA CARD DL type hierar-
chy must, e.g., always contain a type Object. Then, we define the syntax of
JAVA CARD DL which consists of terms, formulae, and a new category of ex-
pressions called updates (Sect. 3.2). In the subsequent Sect. 3.3, we present a
model-theoretic semantics of JAVA CARD DL based on Kripke structures.

3.2.1 Type Hierarchy and Signature

We start with the definition of the underlying type hierarchies and the sig-
natures of JAVA CARD DL. Since the logic we define is tailored to the pro-
gramming language JAVA CARD, we are only interested in type hierarchies
containing a set of certain types that are part of every JAVA CARD program.
First, we define a direct subtype relation that is needed in the subsequent
definition.

Definition 3.1 (Direct subtype). Assume a first-order logic type system
(T , Td, Ta,⊑). Then the direct subtype relation ⊑0 ⊆ T × T between two types
A,B ∈ T is defined as:

A ⊑0 B
iff

A ⊑ B and A 6= B and
C = A or C = B for any C ∈ T with A ⊑ C and C ⊑ B.

Intuitively, A is a direct subtype of B if there is no type C that is between A
and B.

Definition 3.2 (JAVA CARD DL type hierarchy). A JAVA CARD DL type
hierarchy is a type hierarchy (T , Td, Ta,⊑) (⇒ Def. 2.1) such that:

• Td contains (at least) the types:



72 3 Dynamic Logic

integerDomain, boolean, Object, Error, Exception,
RuntimeException, NullPointerException, ClassCastException,
ExceptionInInitializerError, ArrayIndexOutOfBoundsException,
ArrayStoreException, ArithmeticException, Null;

• Ta contains (at least) the types: integer, byte, short, int, long, char,
Serializable, Cloneable, Throwable;

• if A ⊑ Object, then Null ⊑ A for all A 6= ⊥ ∈ T ;
• integerDomain ⊑0 A and A ⊑0 integer for all A ∈ {byte, short, int,
long, char};

• ⊥ ⊑0 integerDomain;
• ⊥ ⊑0 Null;
• ⊥ ⊑0 boolean;
• A ⊓ B = ⊥ for all A ∈ {integerDomain, integer, byte, short, int,
long, char, boolean} and B ⊑ Object.

In the remainder of this chapter, with type hierarchy we always mean a JAVA

CARD DL type hierarchy, unless stated otherwise.

A JAVA CARD DL type hierarchy is a type hierarchy containing the types
that are built into JAVA CARD like boolean, the root reference type Object,
and the type Null, which is a subtype of all reference types (Null exists im-
plicitly in JAVA CARD). As in the first-order case, the type hierarchy contains
the special types ⊤ and ⊥ (⇒ Def. 2.1). Moreover, it contains a set of abstract
and dynamic (i.e., non-abstract) types reflecting the set of JAVA CARD inter-
faces and classes necessary when dealing with arrays. These are Cloneable,
Serializable, Throwable, and some particular sub-sorts of the latter which are
the possible exceptions and errors that may occur during initialisation and
when working with arrays.

Finally, a type hierarchy includes the types boolean, byte, short, int,
long, and char representing the corresponding primitive JAVA CARD types.
Note, that these types (except for boolean) are abstract and are subtypes of
the likewise abstract type integer. The common subtype of these types is
the non-abstract type integerDomain, thus satisfying the requirement that
any abstract type must have a non-abstract subtype. Later we define that
the domain of integerDomain is the (infinite) set Z of integer numbers. Since
the domain of a type by definition (⇒ Def. 2.20) includes the domains of
its subtypes, all the abstract supertypes of integerDomain share the common
domain Z. The typing of the usual functions on the integers, like e.g., addition,
is defined as integer, integer→ integer.

Reasons for the Complicated Integer Type Hierarchy

The reasons behind the somewhat complicated looking integer type hier-
archy are twofold. First, we want to have mathematical integers in the
logic instead of integers with finite range as in JAVA CARD (the advan-
tage of this decision is explained in Chapter 12). As a consequence, the



3.2 Syntax 73

type integer is defined. Second, we need a dedicated type for each prim-
itive JAVA CARD integer type. That is necessary for a correct handling of
ArrayStoreExceptions in the calculus which requires the mapping between
types in JAVA CARD and sorts in JAVA CARD DL to be an injection.

The reason why we introduce the common subtype integerDomain is
that integer, short, . . . , char are supposed to share the same domain,
namely the integer numbers Z. As a consequence of Def. 2.20, which requires
that any domain element d ∈ D has a unique dynamic type δ(d), the only
possibility to obtain the same domain for several types is to declare these
types as abstract and introduce a common non-abstract subtype holding
the domain.

The definition of type hierarchies (Def. 3.2) partly fixes the subtype rela-
tion. It requires that type Null is a common subtype of all subtypes of Object
(except ⊥). That is necessary to correctly reflect the JAVA CARD reference
type hierarchy. Besides reference types, JAVA CARD has primitive types (e.g.,
boolean, byte, or int) which have no common sub- or supertype with any ref-
erence type. Def. 3.2 guarantees that we only consider type hierarchies where
there is no common subtype (except ⊥, which does not exist in JAVA CARD)
of primitive and reference types, thus correctly reflecting the type hierarchy
of the JAVA CARD language.

However, Def. 3.2 does not fix the set of user-defined types and the subtype
relation between them. A JAVA CARD type hierarchy can contain additional
user-defined types, e.g., those types that are declared in a concrete JAVA CARD

program (⇒ Def. 3.10).
Fig. 3.1 shows the basic type hierarchy without any user-defined types.

Due to space restrictions the types short, int, and the built-in API reference
types like Serializable, Cloneable, Exception, etc. are omitted from the figure.
Abstract types are written in italics (⊥ is of course also abstract). The subtype
relation A ⊑ B is illustrated by an arrow from A to B (reflexive arrows are
omitted).

Example 3.3. Consider the type hierarchy in Fig. 3.2 which is an extension
of the first-order type hierarchy from Example 2.6. The types AbstractCol-
lection, List, AbstractList, ArrayList, and the array type Object[ ] are user-
defined, i.e., are not required to be contained in any type hierarchy. As we
define later, any array type must be a subtype of the built-in types Object,
Serializable, and Cloneable.

Due to space restrictions some of the built-in types (⇒ Fig. 3.1) are omit-
ted.

As in Chapter 2, we now define the set of symbols that the language
JAVA CARD DL consists of. In contrast to first-order signatures, we have two
kinds of function and predicate symbols: rigid and non-rigid symbols. Conse-
quently, the set of function symbols is divided into two disjoint subsets FSymr



74 3 Dynamic Logic

⊤

integer

char byte · · · long

integerDomain

boolean

Object

API reference types

(Serializable,Clone-

able, . . . )

Null

⊥

Fig. 3.1. Basic JAVA CARD DL type hierarchy without user-defined types

⊤

Abstract−
Collection List

AbstractList

ArrayList

Object

Serializable Cloneable

Object[]

Null

⊥

Fig. 3.2. Example for a JAVA CARD DL type hierarchy (built-in types partly omit-
ted)



3.2 Syntax 75

and FSymnr of rigid and non-rigid functions, respectively (the same applies
to the set of predicate symbols). Intuitively, rigid symbols have the same
meaning in all program states (e.g., the addition on integers or the equality
predicate), whereas the meaning of non-rigid symbols may differ from state
to state. Non-rigid symbols are used to model (local) variables, attributes,
and arrays outside of modalities, i.e., they occur as terms in JAVA CARD DL.
Local variables can thus not be bound by quantifiers—in contrast to logical
variables. Note, that in classical DL there is no distinction between logical
variables and program variables (constants).

We only allow signatures that contain certain function and predicate sym-
bols. For example, we require that a JAVA CARD DL signature contains con-
stants 0, 1, . . . representing the integer numbers, function symbols for arith-
metical operations like addition, subtraction, etc., and the typical ordering
predicates on the integers.

Definition 3.4 (JAVA CARD DL signature). Let T be a type hierarchy,
and let FSym0

r , FSym0
nr , PSym0

r , and PSym0
nr be the sets of rigid and non-

rigid function and predicate symbols from App. A.
Then, a JAVA CARD DL signature (for T) is a tuple

Σ = (VSym,FSymr,FSymnr ,PSymr,PSymnr , α)

consisting of

• a set VSym of variables (as in the first-order case, Def. 2.8),
• a set FSymr of rigid function symbols and a set FSymnr of non-rigid

function symbols such that

FSymr ∩ FSymnr = ∅
FSym0

r ⊆ FSymr

FSym0
nr ⊆ FSymnr ,

• a set PSymr of rigid predicate symbols and a set PSymnr of non-rigid
predicate symbols such that

PSymr ∩ PSymnr = ∅
PSym0

r ⊆ PSymr

PSym0
nr ⊆ PSymnr , and

• a typing function α (as in the first-order case, Def. 2.8).

In the remainder of this chapter, with signature we always mean a JAVA

CARD DL signature, unless stated otherwise.

Example 3.5. Given the type hierarchy from Example 3.3 (⇒ Fig. 3.2), an
example for a signature is the following:

VSym = {a, n, x}



76 3 Dynamic Logic

with
a:ArrayList, n:integer, x:integer

FSymr = {f, g} ∪ FSym0
r

with
f : integer → integer

g : integer

FSymnr = {al, arg, c, data, i, j, length, para1, sal, v} ∪ FSym0
nr

with
al : ArrayList
arg : int

c : integer

data : ArrayList → Object[ ]
i : int

j : short

length : ArrayList → int

para1 : ArrayList
sal : ArrayList
v : int

and
PSymr = PSym0

r

Note 3.6. In the KeY system the user never has to explicitly define the whole
type hierarchy and signature but the system automatically derives large parts
of both from the JAVA CARD program under consideration. Only types and
symbols that do not appear in the program must be declared manually. Note,
however, that from a logical point of view the type hierarchy and the signature
are fixed a priori, and formulae (and thus programs in modal operators being
part of a formula) must only contain types and symbols declared in the type
hierarchy and signature.

The syntactic categories of first-order logic are terms and formulae. Here,
we need an additional category called updates [Beckert, 2001], which are used
to (syntactically) represent state changes.

In contrast to first-order logic, the definition of terms and formulae (and
also updates) in JAVA CARD DL cannot be done separately, since their def-
initions are mutually recursive. For example, a formula may contain terms
which may contain updates. Updates in turn may contain formulae (see Ex-
ample 3.9). Nevertheless, in order to improve readability we give separate
definitions of updates, terms, and formulae in the following.



3.2 Syntax 77

3.2.2 Syntax of JAVA CARD DL Terms

Definition 3.7 (Terms of JAVA CARD DL). Given a JAVA CARD DL sig-
nature (VSym,FSymr,FSymnr ,PSymr,PSymnr , α) for a type hierarchy (T ,
Td, Ta,⊑), the system {TermsA}A∈T of sets of terms of static type A is
inductively defined as the least system of sets such that:

• x ∈ TermsA for all variables x:A ∈ VSym;
• f(t1, . . . , tn) ∈ TermsA for all function symbols f : A1, . . . , An → A in

FSymr ∪ FSymnr and terms ti ∈ TermsA′

i
with A′

i ⊑ Ai (1 ≤ i ≤ n);
• (if φ then t1 else t2) ∈ TermsA for all φ ∈ Formulae (⇒ Def. 3.14)

and all terms t1 ∈ TermsA1
, t2 ∈ TermsA2

with A = A1 ⊔A2;
• (ifExMinx.φ then t1 else t2) ∈ TermsA for all variables x ∈ VSym,

all formulae φ ∈ Formulae (⇒ Def. 3.14), and all terms t1 ∈ TermsA1
,

t2 ∈ TermsA2
with A = A1 ⊔A2;

• {u} t ∈ TermsA for all updates u ∈ Updates (⇒ Def. 3.8) and all terms
t ∈ TermsA.

In the style of JAVA CARD syntax we often write t.f instead of f(t) and a[i]
instead of [ ](a, i).1

Terms in JAVA CARD DL play the same role as in first-order logic, i.e.,
they denote elements of the domain. The syntactical difference to first-order
logic is the existence of terms of the form (if φ then t1 else t2) and
(ifExMinx.φ then t1 else t2) (which could be defined for first-order logic
as well). Informally, if φ holds, a conditional term (if φ then t1 else t2) de-
notes the domain element t1 evaluates to. Otherwise, if φ does not hold, t2 is
evaluated. The meaning of a term (ifExMinx.φ then t1 else t2) is a bit more
involved. If there is some d such that φ holds, then the whole term evaluates
to the value denoted by t1 under the variable assignment βd′

x , where d′ is the
least element satisfying φ. Otherwise, if φ does not hold for any x, then t2 is
evaluated.

Terms can be prefixed by updates, which we define next.

3.2.3 Syntax of JAVA CARD DL Updates

Definition 3.8 (Syntactic updates of JAVA CARD DL). Given a JAVA

CARD DL signature (VSym,FSymr,FSymnr ,PSymr,PSymnr , α) for a type
hierarchy (T , Td, Ta,⊑), the set Updates of syntactic updates is inductively
defined as the least set such that:

Function update: (f(t1, . . . , tn) := t) ∈ Updates for all terms f(t1, . . . , tn) ∈
TermsA (⇒ Def. 3.7) with f ∈ FSymnr and t ∈ TermsA′ s.t. A′ ⊑ A;

Sequential update: (u1 ;u2) ∈ Updates for all u1, u2 ∈ Updates;
Parallel update: (u1 ||u2) ∈ Updates for all u1, u2 ∈ Updates;

1 Note, that [ ] is a normal function symbol declared in the signature.



78 3 Dynamic Logic

Quantified update: (for x; φ; u) ∈ Updates for all u ∈ Updates, x ∈ VSym,
and φ ∈ Formulae (⇒ Def. 3.14);

Update application: ({u1} u2) ∈ Updates for all u1, u2 ∈ Updates.

Syntactic updates can be seen as a language for describing program transi-
tions. Informally speaking, function updates correspond to assignments in an
imperative programming language and sequential and parallel updates corre-
spond to sequential and parallel composition, respectively. Quantified updates
are a generalisation of parallel updates. A quantified update (for x; φ; u) can
be understood as (the possibly infinite) sequence of updates

· · · || [x/tn]u || · · · || [x/t0]u

put in parallel. The individual updates [x/tn]u, . . . , [x/t0]u are obtained by
substituting the free variable x in the update u with all terms tn, . . . , t0 such
that [x/ti]φ holds (it is assumed that all terms ti evaluate to different domain
elements). For parallel updates, the order matters. In case of a clash, i.e., if
two updates put in parallel modify the same location, the latter one dominates
the earlier one (if read from left to right). Coming back to our approximation
of quantified updates by parallel updates, this means, that the order of the
updates [x/ti]u put in parallel is crucial. As we see in Def. 3.27, the order
depends on a total order �, that is imposed on the domain, such that for all
[x/ti]u the following holds: ti evaluates to a domain element that is less than
all the elements tj (j > i) evaluate to (with respect to �).

Updates vs. Other State Transition Languages

The idea of describing state changes by a (syntactically quite restrictive)
language like JAVA CARD DL updates is not new and appears in slightly
different ways in other approaches as well. For example, abstract state ma-
chines (ASMs) [Gurevich, 1995] are also based on updates which, however,
have a different clash resolution strategy (clashing updates have no effect).

Another concept that is similar to updates are generalised substitutions
in the B language [Abrial, 1996].

According to the semantics we define below, JAVA CARD DL terms are
(like first-order terms) evaluated in a first-order interpretation that fixes the
meaning of function and predicate symbols. However, in JAVA CARD DL mod-
els, we have many first-order interpretations (representing program states)
rather than only one. Programs occurring in modal operators describe a state
transition to the state in which the formula following the modal operator is
evaluated. Updates serve basically the same purpose, but they are simpler in
many respects.

A simple function update describes a transition from one state to exactly
one successor state (i.e., the update process always “terminates normally” in
our terminology). Exactly one “memory location” is changed during this tran-
sition. None of the above holds in general for a JAVA assignment. Furthermore,



3.2 Syntax 79

the syntax of updates generated by the calculus that we define (⇒ Sect. 3.6)
is restricted even further, making analysis and simplification of state change
effects easier and efficient. Updates (together with case distinctions) can be
seen as a normal form for programs and, indeed, the idea of our calculus is to
stepwise transform a program to be verified into a sequence of updates, which
are then simplified and applied to first-order formulae.

Example 3.9. Given the type hierarchy and the signature from Examples 3.3
and 3.5, respectively, the following are JAVA CARD DL terms:

n a variable
c a non-rigid 0-ary function (constant)
{c := 0}(c) a term with a function update
{c := 0 || c := 1}(c) a term with a parallel update
{for x; x

.
= 0 | x

.
= 1; c := x}(c)

a term with a quantified update
{for a; a<− ArrayList; length(x) := 0}(length(al))

a term with a quantified update

In contrast, the following are not terms:

f wrong number of arguments
{n := 0}(c) update tries to change the value of a variable
{g := 0}(c) update tries to change the value of a rigid function symbol
{for i; i

.
= 0 | i

.
= 1; c := i}(c)

an update quantifying over a term instead of a variable
(i was declared to be a function symbol)

Updates vs. Substitutions

In classical dynamic logic [Harel et al., 2000] and Hoare logic [Hoare, 1969]
there are no updates. Modifications of states are expressed using equations
and syntactic substitutions. Consider, for example, the following instance
of the assignment rule for classical dynamic logic

Γ, x′
.
= x+ 1 =⇒ [x/x′]φ, ∆

Γ =⇒ 〈x = x+ 1〉φ, ∆

where the fresh variable x′ denotes the new value of x. The formula φ must
be evaluated with the new value x′ and therefore x is substituted with x′.
The equation x′

.
= x + 1 establishes the relation between the old and the

new value of x.
In principle, updates are not more expressive than substitutions. How-

ever, for reasoning about programs in an object-oriented programming lan-
guage like JAVA CARD updates have some advantages.

The main advantage of updates is that they are part of the syntax of
the (object-level) logic, while substitutions are only used on the meta-level



80 3 Dynamic Logic

to describe and manipulate formulae. Thus, updates can be collected and
need not be applied until the whole program has been symbolically executed
(and, thus, has disappeared). The collected updates can be simplified before
they are actually applied, which often helps to avoid case distinctions in
proofs. Substitutions in contrast are applied immediately and thus there is
no chance of simplification (for more details see Sect. 3.6.1).

Another point in favour for updates is that substitutions—as usually
defined for first-order logic—replace variables with terms. This, however,
does not help to handle JAVA CARD assignments since they modify non-rigid
functions rather than variables. Thus, in order to handle assignments with
updates, a more general notion of substitution would become necessary.

3.2.4 Syntax of JAVA CARD DL Formulae

Before we define the syntax of JAVA CARD DL formulae, we first define nor-
malised JAVA CARD programs, which are allowed to appear in formulae (within
modalities). The normal form can be established automatically by a simple
program transformation and/or extension of the type hierarchy and the sig-
nature and does not constitute a real restriction.

Normalised JAVA CARD Programs

The definition of normalised JAVA CARD programs is necessary for two reasons.
First, we do not want to handle certain features of JAVA CARD (like, e.g., inner
classes) in the calculus (⇒ Sect. 3.4.6), because including them would require
many rules to be added to our calculus. The approach we pursue is to remove
such features by a simple program transformation. The second reason is that a
JAVA CARD program must only contain types and symbols declared in the type
hierarchy and signature. Note, that this does not restrict the set of possible
JAVA CARD programs. It is always possible to adjust the type hierarchy and
signature to a given program.

Since JAVA CARD code can appear in formulae, we actually have to give
a formal definition of the syntax of JAVA CARD. This however goes beyond
the scope of this book and we refer the reader to the JAVA CARD language
specification [Chen, 2000, Sun, 2003d,c].

Definition 3.10 (Normalised JAVA CARD programs). Given a type hier-
archy (T , Td, Ta,⊑) for a signature (VSym, FSymr,FSymnr ,PSymr,PSymnr ,
α), a normalised JAVA CARD program P is a set of (abstract) class and in-
terface definitions satisfying the following constraints:

1. P is compile-correct and compile-time constants of an integer type do not
cause overflow.2

2 The second condition can be checked statically. For example, a compile time con-
stant like final byte b=(byte)500; is not allowed since casting the literal 500
of type int to type byte causes overflow.



3.2 Syntax 81

2. P does not contain inner classes.
3. Identifiers in declarations of local variables, attributes, and parameters of

methods (and constructors) are unique.
4. A ∈ Ta for all interface and abstract class types A declared in or imported

into P.
5. A ∈ Td for all non-abstract class types A declared in or imported into P.
6. C ⊑ D iff C is implicitly or explicitly declared as a subtype of D (using

the keywords extends or implements), for all (abstract) class or interface
types C,D declared in or imported into P.

7. For all array types A [ ] · · · [ ]
︸ ︷︷ ︸

n times

(or A[ ]n for short where A[ ]0 = A) occurring

in P and 1 ≤ i ≤ n:
– A ∈ T ,
– B[ ]m ⊑ A[ ]n iff B[ ]m−1 ⊑ A[ ]n−1 for all B[ ]m ∈ T (m ≥ 1),
– A[ ]i ∈ Td,
– A[ ]i ⊑ Object,
– A[ ]i ⊑ Serializable,
– A[ ]i ⊑ Cloneable, and
– B 6⊑ A[ ]i ∈ Td for all non-array types B ∈ T \ {⊥,Null},
– Null ⊑ A[ ]i.

8. For all local variables and static field declarations “A id;” in P:
a) If A is not an array type, then id:A ∈ FSymnr .
b) If A = A′[ ]n is an array type, then id:(A′[ ]n) ∈ FSymnr .

9. For all non-static field declarations “A id;” in a class C in P:
a) If A is not an array type, then id : (C → A) ∈ FSymnr .
b) If A = A′[ ]n is an array type, then id : (C → A′[ ]n) ∈ FSymnr .

Let Π denote the set of all normalised JAVA CARD programs.

Not surprisingly, we require that the programs P we consider are compile-
correct (Constraint (1)). Constraint (2) requires that P does not contain inner
classes like, e.g., anonymous classes. In principle, this restriction could be
dropped. This however would result in a bunch of extra rules for the calculus
to be defined in Sect. 3.4.6.

In contrast to the programming language JAVA CARD, in JAVA CARD DL we
do not have overloading of function or predicate symbols. Therefore we require
that the identifiers used in declarations in P are unique (Constraint (3)). For
instance, it is not allowed to have two local variables with the same name
occurring in P . Field hiding is disallowed by the same token.

Note, that the Constraints (2) and (3) are harmless restrictions in the sense
that any JAVA CARD program can easily be transformed into an equivalent
program satisfying the constraints.

Constraints (4) and (5) make sure that all non-array reference types de-
clared in and imported into P are contained in the type hierarchy. This in
particular applies to all classes that are automatically imported into any pro-
gram like the classes in package java.lang (in particular Object).



82 3 Dynamic Logic

Constraint (6) guarantees that the inheritance hierarchy of the JAVA CARD

program P is correctly reflected by the subtype relation in the type hierarchy.
Array reference types are addressed in Constraint (7). Array types are not

declared explicitly in JAVA CARD like class or interface types but nevertheless
they still must be part of the type hierarchy and the subtype relation must
match the inheritance hierarchy in JAVA CARD, i.e., array types are subtypes
of Serializable, Cloneable, and Object.

The first condition requires the element type A of an array type A[ ]n to
be part of the type hierarchy (A ∈ T ). The subtype relation between two
array types B[ ]m and A[ ]n is recursively defined on the component types
B[ ]m−1 and A[ ]n−1. Therefore, we additionally postulate that all array types
up to dimension n with element type A are contained in the set of dynamic
types (A[ ]i ∈ Td) as well. Then the recursive definition is well-founded since
eventually we arrive at non-array types and we require that A[ ]i ⊑ Object.
Finally, we stipulate that non-array types B ∈ T \ {⊥,Null} must not be a
subtype of any array type A[ ]i.

Local variables and static fields in JAVA CARD occur as non-rigid 0-ary
functions in the logic (i.e., as constants). Therefore, we require for any such ele-
ment a corresponding function to be present in the signature (Constraint (8)).

Finally, in Constraint (9) we consider non-static fields which are repre-
sented by non-rigid unary functions that map instances of the class declaring
the field to elements of the field type.

In order to normalise a JAVA CARD program, Constraints (2) and (3) can
always be satisfied by performing a program transformation. For example,
inner classes can be transformed into top-level classes; identifiers (e.g., at-
tributes or local variables) can be renamed. On the other hand, meeting the
Constraints (4)–(9) may require an extension of the underlying type hierarchy
and signature, since only declared types and symbols may be used in a nor-
malised JAVA CARD program. However, such an extension is harmless and is
done automatically by the KeY system, i.e., the user does not have to explic-
itly declare all the types and symbols occurring in the JAVA CARD program
to be considered.

Example 3.11. Given the type hierarchy and signature from Examples 3.3
and 3.5, respectively, the following set of classes and interfaces constitute
a normalised JAVA CARD program.

JAVAabstra
t 
lass AbstractCollection {

2 }

4 interfa
e List {

}

6 abstra
t 
lass AbstractList

8 extends AbstractCollection implements List {



3.2 Syntax 83

}

10 
lass ArrayList extends AbstractList {

12 stati
 ArrayList sal;

14 stati
 int v;

16 Object[] data;int length;

18 publi
 stati
 void demo1() {

20 int i=0;

}

22 publi
 stati
 void demo2(ArrayList para1) {

24 // int i=1; violates Constraint (3)short j;

26 if (para1==null)
j=0;

28 else
j=1;

30 para1.demo3();

}

32 void demo3() {

34 this.length=this.length+1;
}

36 int inc(int arg) {

38 return arg+1;

}

40

}

42

// class Violate { violates Constraint (5)
44 // int k; violates Constraint (8)

// }

JAVA

The above program satisfies all the constraints from Def. 3.10. All interface
types, (abstract) class types, and array types are contained in the correspond-
ing JAVA CARD DL type hierarchy, and for all identifiers in the program there
is a type correct function in the signature.

The statement in line 24 (commented out) would violate Constraint (3)
since method demo1 already declares a local variable with identifier i.



84 3 Dynamic Logic

Similarly, declaring a class type Violate that is not contained in the type
hierarchy (as in line 43) violates Constraint (5). Also not allowed is declaring
a local variable if the signature does not contain the corresponding function
symbol (line 44).

Within modal operators we exclusively allow for sequences of statements.
A so-called program statement is either a normal JAVA statement, a method-
body statement, or a method-frame statement. Note that logical variables, in
contrast to non-rigid function symbols reflecting local program variables, at-
tributes, and arrays, must not occur in programs.

Intuitively, a method-body statement is a shorthand notation for the pre-
cisely identified implementation of method m(. . .) in class T . That is, in con-
trast to a normal method call in JAVA CARD where the implementation to be
taken is determined by dynamic binding, a method-body statement is a call
to a method declared in a type that is precisely identified by the method-body
statement.

A method-frame statement is required when handling a method call by
syntactically replacing it with the method’s implementation (⇒ Sect. 3.6.5).
To handle the return statement in the right way, it is necessary

1. to record the object field or variable x that the result is to be assigned to,
and

2. to mark the boundaries of the implementation body when it is substituted
for the method call.

For that purpose, we allow a method-frame statement to occur as a JAVA

CARD DL program statement.

Definition 3.12 (JAVA CARD DL program statement). Let P ∈ Π be a
normalised JAVA CARD program. Then a JAVA CARD DL program statement
is

• a JAVA statement as defined in the JAVA language specification [Gosling
et al., 2000, § 14.5] (except synchronized),

• a method-body statement

retvar=target.m(t1,...,tn)@T;

where
– target.m(t1 , . . . , tn) is a method invocation expression,
– the type T points to a class declared in P (from which the implemen-

tation is taken),
– the result of the method is assigned to retvar after return (if the method

is not void), or
• a method-frame statement

method-frame(result->retvar, source=T, this=target) : { body }

where



3.2 Syntax 85

– the return value of the method is assigned to retvar when body has
been executed (if the method is not void),

– the type T points to the class in P providing the particular method
implementation,

– target is the object the method was invoked on,
– body is the body of the invoked method.

Thus, all JAVA statements that are defined in the official language spec-
ification can be used (except for synchronized blocks), and there are two
additional ones: a method-body statement and a method-frame statement.

Another extension is that we do not require definite assignment. In JAVA,
the value of a local variable or final field must have a definitely assigned
value when any access of its value occurs [Gosling et al., 2000, § 16]. In JAVA

CARD DL we allow sequences of statements that violate this condition (the
variable then has a well-defined but unknown value).

Note, that the additional constructs and extensions are a “harmless” ex-
tension as they are only used for proof purposes and never occur in the verified
JAVA CARD programs.

Definition 3.13 (Legal sequence of JAVA CARD DL program state-
ments). Let P ∈ Π be normalised JAVA CARD program.

A sequence st1 · · · stn (n ≥ 0) of JAVA CARD DL program statements is
legal w.r.t. to P if P enriched with the class declaration

public class DefaultClass {

public static void defaultMethod() {

st1
...
stn

}

}

where DefaultClass and defaultMethod are fresh identifiers—is a normalised
JAVA CARD program, except that st1 · · · stn do not have to satisfy the definite
assignment condition [Gosling et al., 2000, § 16].

Now we can define the set of JAVA CARD DL formulae:

Definition 3.14 (Formulae of JAVA CARD DL). Let a signature (VSym,
FSymr,FSymnr ,PSymr,PSymnr , α) for a type hierarchy T a normalised JAVA

CARD program P ∈ Π be given.
Then, the set Formulae of JAVA CARD DL formulae is inductively defined

as the least set such that:

• r(t1, . . . , tn) ∈ Formulae for all predicate symbols r : A1, . . . , An ∈
PSymr ∪ PSymnr and terms ti ∈ TermsA′

i
(⇒ Def. 3.7) with A′

i ⊑ Ai

(1 ≤ i ≤ n),



86 3 Dynamic Logic

• true, false ∈ Formulae,
• !φ, (φ | ψ), (φ & ψ), (φ −> ψ), (φ <−> ψ) ∈ Formulae for all φ, ψ ∈

Formulae,
• ∀x.φ, ∃x.φ ∈ Formulae for all φ ∈ Formulae and all variables x ∈ VSym,
• {u} φ ∈ Formulae for all φ ∈ Formulae and u ∈ Updates (⇒ Def. 3.8),
• 〈p〉φ, [p]φ ∈ Formulae for all φ ∈ Formulae and any legal sequence p of

JAVA CARD DL program statements.

In the following we often abbreviate formulae of the form (φ −> ψ) & (!φ −>
ξ) by if φ then ψ else ξ.

Example 3.15. Given the type hierarchy and the signature from Examples 3.3
and 3.5, respectively, and the normalised JAVA CARD DL program from Ex-
ample 3.11, the following are JAVA CARD DL formulae:

{c := 0}(c
.
= 0) a formula with an update

({c := 0}c)
.
= c a formula containing a term with an update

sal !
.
= null −> 〈ArrayList.demo2(sal);〉j

.
= 1

a formula with a modal operator
{sal := null}〈ArrayList.demo2(sal);〉j

.
= 0

a formula with a modal operator and an up-
date

{v := g}〈ArrayList al=new ArrayList(); v=al.inc(v);〉(v
.
= g + 1)

a formula with a modal operator and an up-
date

{v := g}〈 ArrayList al=new ArrayList();

v=al.inc(v)@ArrayList〉(v
.
= g + 1)

a method-body statement within a modal op-
erator

〈int i=0; v=i;〉(v
.
= 0) local variable declaration and assignment

within a modal operator

Note 3.16. In program verification, one is usually interested in proving that
the program under consideration satisfies some property for all possible input
values. Since, by definition, terms (except those declared as static fields) and
in particular logical variables, i.e., variables from the set VSym, may not occur
within modal operators, it can be a bit tricky to express such properties. For
example, the following is not a syntactically correct JAVA CARD DL formula:

∀n.(〈 ArrayList al=new ArrayList();

v=al.inc(n)〉(v
.
= n+ 1))

To express the desired property, there are two possibilities. The first one is
using an update to bind the program variable to the quantified logical variable:

∀n.{v := n}(〈 ArrayList al=new ArrayList();

v=al.inc(v);〉(v
.
= n+ 1))



3.3 Semantics 87

The second possibility is to use an equation:

∀n.(n
.
= v −> 〈 ArrayList al=new ArrayList();

v=al.inc(v);〉(v
.
= n+ 1))

Both possibilities are equivalent with respect to validity: the first one is valid
iff the second one is valid.3

Before we define the semantics of JAVA CARD DL in the next section, we ex-
tend the definition of free variables from Chap. 2 to the additional syntactical
constructs of JAVA CARD DL.

Definition 3.17. We define the set fv(u) of free variables of an update u by:

• fv(f(t1, . . . , tn) := t) = fv(t) ∪
⋃n

i=1 fv(ti),
• fv(u1 ;u2) = fv(u1) ∪ fv(u2),
• fv(u1 ||u2) = fv(u1) ∪ fv(u2),
• fv(for x; φ; u) = (fv(φ) ∪ fv(u)) \ {x}.

For terms and formulae we extend Def. 2.18 as follows:

• fv(if φ then t1 else t2) = fv(φ) ∪ fv(t1) ∪ fv(f2)
• fv(ifExMinx.φ then t1 else t2) = ((fv(φ) ∪ fv(t1)) \ {x}) ∪ fv(f2)
• fv({u}t) = fv(u) ∪ fv(t) for a term t,
• fv({u}φ) = fv(u) ∪ fv(φ) for a formula φ,
• fv(〈p〉φ) = fv(φ) for a formula φ,
• fv([p]φ) = fv(φ) for a formula φ.

3.3 Semantics

We have seen that the syntax of JAVA CARD DL extends the syntax of first-
order logic with updates and modalities. On the semantic level this is reflected
by the fact that, instead of one first-order model, we now have an (infinite)
set of such models representing the different program states. Traditionally, in
modal logics the different models are called worlds. But here we call them
states, which better fits the intuition.

Our semantics of JAVA CARD DL is based on so-called Kripke structures,
which are commonly used to define the semantics of modal logics. In our case
a Kripke structure consists of

• a partial first-order model M fixing the meaning of rigid function and
predicate symbols,

• an (infinite) set S of states where a state is any first-order model refin-
ing M, thus assigning meaning to the non-rigid function and predicate
symbols (which are not interpreted by M), and

3 Please note that both formulae φ1, φ2 are not logically equivalent in the sense
that φ1 ↔ φ2 is logically valid.



88 3 Dynamic Logic

• a program relation ρ fixing the meaning of programs occurring in modal-
ities: (S1, p, S2) ∈ ρ iff the sequence p of statements when started in
state S1 terminates in state S2, assuming it is executed in some static
context, i.e., in some static method declared in some public class.

3.3.1 Kripke Structures

Definition 3.18 (JAVA CARD DL Kripke structure). Let a signa-
ture (VSym,FSymr,FSymnr ,PSymr,PSymnr , α) for a type hierarchy (T , Td,
Ta,⊑) be given and let P ∈ Π be a normalised JAVA CARD program.

A JAVA CARD DL Kripke structure K for that signature, type hierarchy,
and program is a tuple (M,S, ρ) consisting of a partial first-order model M =
(T0,D0, δ0, D0, I0), a set S of states, and a program relation ρ such that:

• T0 = T ;
• the partial domain D0 is a set satisfying

– Z = DintegerDomain

0 ,
– {tt ,ff } = Dboolean

0 ,
– {null} = DNull

0 ,
– for all dynamic types A ∈ Td \ {Null} with A ⊑ Object there is a

countably infinite set D′
0 ⊆ D0 such that δ0(d) = A for all d ∈ D′

0,
– for all f : A1, . . . , An → A ∈ FSymr ∪ FSymnr

D0(f) =

{

∅ if f ∈ FSymnr

DA1

0 × · · · × DAn

0 if f ∈ FSymr

– for all p : A1, . . . , An ∈ PSymr ∪ PSymnr

D0(p) =

{

∅ if p ∈ PSymnr

DA1

0 × · · · × DAn

0 if p ∈ FSymr

– I0(f) for f ∈ FSym0
r (see App. A.2.1),

– I0(p) for p ∈ PSym0
r (see App. A.2.2);

• the set S of JAVA CARD DL states consists of all first-order models (D, δ, I)
refining M with

– D = D0,
– δ = δ0;

• the program relation ρ is, for all states S1, S2 ∈ S and any legal sequence p
of JAVA CARD DL program statements, defined by:

ρ(S1, p, S2)
iff

p started in S1 in a static context terminates normally in S2

according to the JAVA language specification [Gosling et al., 2000].



3.3 Semantics 89

The partial model M is called Kripke seed since it determines the set of states
of a JAVA CARD DL Kripke structure.

Note 3.19. In the above definition we require that the partial domain D0

(which is equal to the domain D) is a set satisfying the mentioned properties.
This guarantees in particular that the domain contains exactly the two ele-
ments tt and ff with dynamic type boolean and that null is the only element
with dynamic type Null.

Moreover, we require that for each dynamic subtype A of type Object
(except type Null) there is a countably infinite subset D′

0 ⊆ D0 with δ0(d) = A.
These domain elements represent the JAVA CARD objects of dynamic type A.
Objects can be created dynamically during the execution of a JAVA CARD

program and therefore we do not know the exact number of objects in advance.
Since for a smooth handling of quantifiers in a calculus it is advantageous to
have a constant domain for all JAVA CARD DL states (see below), we cannot
extend the domain on demand if a new object is created. Therefore, we simply
require an infinite number of domain elements with an appropriate dynamic
type making sure that there is always an unused domain element available to
represent a newly created object.

Constant-domain Assumption

Def. 3.18 requires that both the domain and the dynamic type function
are the same for all states in a Kripke structure. This so-called constant-
domain assumption is a harmless but reasonable and useful restriction as
the following example shows.

If we assume a constant domain, then the formula

∀x.p(x) −> 〈π〉∀x.p(x) ,

where p is a rigid predicate symbol, is valid in all Kripke structures because
p cannot be affected by the program π. Without the constant domain as-
sumption there could be states where this formula does not hold since the
domain of the state reached by π may have more elements than the state
where ∀x.p(x) holds and in particular might include elements for which p
does not hold.

A problem similar to the one above already appears in classical modal
logics. In this setting constant-domain Kripke structures are characterised
by the so-called Barcan formula ∀x.2p(x) → 2∀x.p(x) (see, e.g., the book
by Fitting and Mendelsohn [1999]).

The Kripke seed M of a Kripke structure (Def. 3.18) fixes the interpreta-
tion of the rigid function and predicate symbols, i.e., of those symbols that
have the same meaning in all states. Moreover, it is “total” for these symbols
in the sense that it assigns meaning to rigid symbols for all argument tuples,
i.e., D0(s) = DA1

0 × · · · × DAn

0 for any rigid function or predicate symbol s.



90 3 Dynamic Logic

That means, for example, that division by zero is defined, i.e., I0(x/y) (we
use infix notation for better readability) yields some (fixed but unknown)
element d ∈ Z ⊆ D0 for y = 0.

Handling Undefinedness

The way we deal with undefinedness is based on underspecification as pro-
posed by Gries and Schneider [1995], Constable and O’Donnell [1978].
Hähnle [2005] argues that this approach is superior to other approaches
(at least in the context of specification and verification of programs).

The basic idea is that any function f that is undefined for certain ar-
gument tuples (like, e.g., / which is undefined for {(x, 0) | x ∈ Z}) is made
total by assigning a fixed but unknown result value for those arguments
where it is undefined. This is achieved using a dedicated (semantic) choice
function choicef which has the same arity as f . For example, for / the choice
function choice/ could be defined as choice/(x, 0) = x.

In the presence of choice functions, the definition of validity needs to
be revised such that a formula φ is said to be valid in a model M iff it is
valid in M for all possible definitions of the choice functions. That is, it is
crucial that all possibilities for a choice function are considered rather than
relying on just one particular possibility.

In Example 2.41 we explained how this can be achieved in classical first-
order logic making use of partial models, leaving open the interpretation of
functions for critical argument tuples. A formula is then valid in a (partial)
model M iff it is valid in all (total) models refining M—making sure that
all possibilities for choice functions are considered.

In order to carry over this approach to the Kripke semantics of JAVA

CARD DL there are two options:
1. Leaving open the interpretation of functions for critical argument tuples

in the Kripke seed. Then all possibilities for the choice functions are
considered in the states of the Kripke structure, which are defined as
the set of all models refining the Kripke seed.

2. Fixing a particular choice function in the Kripke seed. Then in order to
consider all choice functions all possible Kripke seeds need be to taken
into account.

In Def. 3.18 we chose the second of these two options, and there are good
reasons for this decision. Since a formula is defined to be valid iff it is
valid in all Kripke structures (⇒ Def. 3.38), we need to consider all Kripke
structures (and thus all Kripke seeds) anyway. The second and more im-
portant argument is that, if we chose the first option, each single Kripke
structure contains states in which the same “undefined” term would eval-
uate to different values. Such a term would then not be rigid anymore
(Lemma. 3.33)—even if the function symbol is declared to be rigid and
the arguments are rigid. That would heavily complicate the definitions of
the semantics of JAVA CARD DL formulae containing modal operators and
of update simplification in Sect. 3.9. For example, without modifying the



3.3 Semantics 91

semantics of JAVA CARD DL formulae, the formula

g
.
= 5/0 −> 〈int i=0;〉g

.
= 5/0 ,

where g is a rigid constant, would no longer be valid since the program
might terminate in a state where 5/0 has a meaning different from that in
the initial state (whereas g has the same meaning in all states since it is
rigid). Hence it is beneficial to fix the semantics of all rigid functions for all
argument tuples already in the Kripke seed.

Please note, that—besides underspecification—there are several other
ways to deal with undefinedness in formal languages. One possibility is to
introduce an explicit value undefined . That approach is pursued, e.g., in
OCL [OCL 2.0]. It has the disadvantage that the user needs to know non-
standard semantics in order to evaluate expressions. Further approaches,
such as allowing for partially defined functions, are discussed in the article
by Hähnle [2005].

The Kripke seed does not provide an interpretation of the non-rigid sym-
bols, which is done by the models refining the seed, i.e., the states of the
Kripke structure.

The semantics of normalised JAVA CARD programs is given by the rela-
tion ρ, where ρ holds for (S1, p, S2) iff the sequence p of statements, when
started in S1, terminates normally in S2. Normal termination means that the
program does not terminate abruptly (e.g., because of an uncaught excep-
tion). Otherwise ρ does not hold, i.e., if the program terminates abruptly or
does not terminate at all.

Non-reachable States

According to Def. 3.18, the set S of JAVA CARD DL states contains all possi-
ble states (i.e., all structures refining the Kripke seed). That implies that a
JAVA CARD DL Kripke structure also contains states that are not reachable
by any JAVA CARD program (e.g., states in which a class is both marked as
initialised and erroneous). The main reason for not excluding such states is
that even if they cannot be reached by any JAVA CARD program, they can
still be reached (or better: described) by updates. For example, the update

T.<classInitialised> := TRUE ||T.<erroneous> := TRUE

describes a state in which a class T ⊑ Object is both initialised and erro-
neous. Such states do not exist in JAVA CARD.

There is no possibility to syntactically restrict the set of updates such
that only states reachable by JAVA CARD programs can be described. Of
course, one could modify the semantics of updates such that updates leading
to non-reachable states do not terminate or yield an unspecified state. That
however would make the semantics and simplification of updates much more
complicated.



92 3 Dynamic Logic

Note 3.20. The definition that abrupt termination and non-termination are
treated the same is not a necessity but a result of the answer to the question
of when we consider a program to be correct. On the level of JAVA CARD DL
we say that a program is totally correct if it terminates normally and if it
satisfies the postcondition (assuming it satisfies the precondition). Thus, if
something unexpected happens and the program terminates abruptly then it
is not considered to be totally correct—even if the postcondition holds in the
state in which the execution of the program abruptly stops.

Other languages like, e.g., the JAVA Modeling Language (JML) have a more
fine-grained interpretation of correctness with respect to (abrupt) termination.
JML distinguishes between normal termination and abrupt termination by an
uncaught exception, and it allows to specify different postcondition for each
of the two cases. Since in the KeY tool we translate JML expressions into
JAVA CARD DL formulae we somehow have to mimic the distinction between
non-termination and abrupt termination in JAVA CARD DL.

This is done by performing a program transformation such that the re-
sulting program catches all exceptions at top-level and thus always terminates
normally. The fact, that the original program would have terminated abruptly
is indicated by the value of a new Boolean variable. For example, in the fol-
lowing formula, the program within the modal operator terminates normally,
independently of the value of j.

KeY\<{
Throwable thrown = null;try {

i = i / j;

} 
at
h (Exception e) {

thrown = e;

}

}\> (thrown != null)
KeY

In the postcondition the formula thrown !
.
= null holds if and only if the

original program (without the try-catch block) terminates abruptly.
For a more detailed account of this issue the reader is referred to Sects. 3.7.1

and 8.2.3.

Analogously to the syntax definition, the semantics of JAVA CARD DL up-
dates, terms, and formulae is defined mutually recursive. For better readability
we ignore this fact and give separate definitions for the semantics of update,
terms, and formulae, respectively.

3.3.2 Semantics of JAVA CARD DL Updates

Similar to the first-order case we inductively define a valuation function valM
assigning meaning to updates, terms, and formulae. Since non-rigid function



3.3 Semantics 93

and predicate symbols can have different meanings in different states, the
valuation function is parameterised with a JAVA CARD DL state, i.e., for each
state S, there is a separate valuation function.

The intuitive meaning of updates is that the term or formula following the
update is to be evaluated not in the current state but in the state described by
the update. To be more precise, updates do not describe a state completely,
but merely the difference between the current state and the target state. As
we see later this is similar to the semantics of programs contained in modal
operators and indeed updates are used to describe the effect of programs.

In parallel updates u1 ||u2 (as well as in quantified updates) clashes can
occur, where u1 and u2 simultaneously modify a non-rigid function f for the
same arguments in an inconsistent way, i.e., by assigning different values.
To handle this problem, we use a last-win semantics, i.e., the update that
syntactically occurs last dominates earlier ones. In the more general situation
of quantified (unbounded parallel) updates for x; φ; u, we assume that a fixed
well-ordering � on the universe D exists (i.e., a total ordering such that every
non-empty subset Dsub ⊆ D has a least element min�(Dsub)). The parallel
application of unbounded sets of updates can then be well-ordered as well,
and clashes can be resolved by giving precedence to the update assigning
the smallest value. For this reasons, we first equip JAVA CARD DL Kripke
structures with a well-ordering on the domain.

Definition 3.21 (JAVA CARD DL Kripke structure with ordered do-
main). A JAVA CARD DL Kripke structure with ordered domain K� is a JAVA

CARD DL Kripke structure K = (M,S, ρ) with a well-ordering on D, i.e., a
binary relation � with the following properties:

• x � x for all x ∈ M (reflexivity),
• x � y and y � x implies x = y (antisymmetry),
• x � y and y � z implies x � z (transitivity), and
• any non-empty subset Dsub ⊆ D has a least element min�(Dsub), i.e.,

min�(Dsub) � y for all y ∈ Dsub (well-orderedness).

As every set can be well-ordered (based on Zermelo-Fraenkel set the-
ory [Zermelo, 1904]), this does not restrict the range of possible domains.

The particular order imposed on the domain of a Kripke structure is a
parameter that can be chosen depending on the problem. In the implemen-
tation of the KeY system, we have chosen the following order as it allows to
capture the effects of a particular class of loops in quantified updates in a
rather nice way Gedell and Hähnle [2006]. Note however, that the order can
be modified without having to adapt other definitions of the logic except for
the predicate quanUpdateLeq that allows to access the order on the object
level (it is required for update simplification (⇒ Sect. 3.9)).

Definition 3.22 (KeY JAVA CARD DL Kripke structure). A KeY JAVA

CARD DL Kripke structure is a JAVA CARD DL Kripke structure with ordered
domain, where the order � is defined for any x, y ∈ D⊤ as follows:



94 3 Dynamic Logic

• If δ0(x) 6= δ0(y) then







x � y if δ0(x) ⊑ δ0(y)

y � x if δ0(y) ⊑ δ0(x)

x � y if δ0(x) ≤lex δ0(y) and neither

δ0(x) ⊑ δ0(y) nor δ0(y) ⊑ δ0(x)
where ≤lex is the usual lexicographic order on the names of types.

• If δ0(x) = δ0(y) then
– if δ0(x) = boolean then x � y iff x = ff
– if δ0(x) = integerDomain then x � y iff

x ≥ 0 and y < 0 or
x ≥ 0 and y ≥ 0 and x ≤ y, or
x < 0 and y < 0 and y ≤ x

– if Null 6= A = δ0(x) ⊑ Object then x � y iff indexA(x) � indexA(y)
where indexT : DT → integer is some arbitrary but fixed bijective
mapping for all dynamic types T ∈ Td \ {Null}

– if δ0(x) = Null then x = y.

The semantics of an update is defined—relative to a given JAVA CARD DL
state—as a partial first-order model (T0,D0, δ,D, I0) that is defined exactly
on those tuples of domain elements that are affected by the update, i.e., the
partial model describes only the modifications induced by the update. Thus,
the semantics of updates is given by a special class of partial models that
differ only in D and I0 from a JAVA CARD DL state (T0,D0, δ,D

′, I ′
0) (here

seen as a partial model), i.e., an update neither modifies the set T0 of fixed
types, nor the partial domain D0, nor the dynamic type function δ. In order
to improve readability, we therefore introduce so-called semantic updates to
capture the semantics of (syntactic) updates.

Definition 3.23. Let (VSym,FSymr,FSymnr ,PSymr,PSymnr , α) be a sig-
nature for a type hierarchy. A semantic update is a triple (f, (d1, . . . , dn), d)
such that

• f : A1, . . . , An → A ∈ FSymnr ,
• di ∈ DAi (1 ≤ i ≤ n), and
• d ∈ DA .

Since updates in general modify more than one location (a location is a
pair (f, (d1, . . . , dn))), we define sets of consistent semantic updates.

Definition 3.24. A set CU of semantic updates is called consistent if for all
(f, (d1, . . . , dn), d), (f ′, (d′1, . . . , d

′
m), d′) ∈ CU ,

d = d′ if f = f ′, n = m, and di = d′i (1 ≤ i ≤ n) .

Let CU denote the set of consistent semantic updates.

As we see in Def. 3.27, a syntactic update describes the modification of
a state S as a set CU of consistent semantic updates. In order to obtain
the state in which the terms, formulae, or updates following an update u are
evaluated, CU is applied to S yielding a state S′.



3.3 Semantics 95

Definition 3.25 (Application of semantic updates). Let (VSym,FSymr,
FSymnr ,PSymr,PSymnr , α) be a signature for a given type hierarchy and let
M = (D0, δ, I0) be a first-order model for that signature.

For any set CU ∈ CU of consistent semantics updates, the modification
CU(M) is defined as the model (D′

0, δ
′, I ′

0) with

D′
0 = D0

δ′ = δ

I ′
0(f)(d1, . . . , dn) =

{

d if (f, (d1, . . . , dn), d) ∈ CU

I0(f)(d1, . . . , dn) otherwise

for all f : A1, . . . , An → A ∈ FSymnr and di ∈ DAi (1 ≤ i ≤ n).

Intuitively, a set CU of consistent semantic updates modifies the interpre-
tation of M for the locations that are contained in CU .

Note 3.26. The consistency condition in Def. 3.24 guarantees that the inter-
pretation function I ′ in Def. 3.25 is well-defined.

Definition 3.27 (Semantics of JAVA CARD DL updates). Given a sig-
nature for a type hierarchy, let K� = (M,S, ρ) be a JAVA CARD DL Kripke
structure with ordered domain, let β be a variable assignment, and let P ∈ Π
be a normalised JAVA CARD program.

For every state S = (D, δ, I) ∈ S, the valuation function valS : Updates →
CU for updates is inductively defined by

• valS,β(f(t1, . . . , tn) := s) = {(f, (d1, . . . , dn), d)} where

di = valS,β(ti) (1 ≤ i ≤ n)

d = valS,β(s) ,

• valSβ(u1 ;u2) = (U1 ∪ U2) \ C where

U1 = valS,β(u1)

U2 = valS′,β(u2) with S′ = valS,β(u1)(S)

C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and
(f, (d1, . . . , dn), d′) ∈ U2 for some d′ 6= d} ,

• valS,β(u1 ||u2) = (U1 ∪ U2) \ C where

U1 = valS,β(u1)

U2 = valS,β(u2)

C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and
(f, (d1, . . . , dn), d′) ∈ U2 for some d′ 6= d} ,



96 3 Dynamic Logic

• valS,β(for x; φ; u) = U where

U = {(f, (d1, . . . , dn), d) | there is a ∈ DA such that
((f, (d1, . . . , dn), d), a) ∈ dom and
b 6� a for all ((f, (d1, . . . , dn), d′), b) ∈ dom}

with dom =
⋃

a∈{d∈DA|S,βd
x
|=φ}(valS,βa

x
(u) × {a}), and A is the type of x,

• valS,β({u1} u2) = valS′,β(u2) with S′ = valS,β(u1)(S).

For an update u without free variables we simply write valS(u) since valS,β(u)
is independent of β.

In both sequential and parallel updates, a later sub-update overrides an
earlier one. The difference however is that with sequential updates the evalu-
ation of the second sub-update is affected by the evaluation of the first one.
This is not the case for parallel updates, which are evaluated simultaneously.

Example 3.28. Consider the updates

c := c+ 1 ; c := c+ 2

and
c := c+ 1 || c := c+ 2

where c is a non-rigid constant. We stepwise evaluate these updates in a JAVA

CARD DL state S1 = (D, δ, I1) with I1(c) = 0.

valS1
(c := c+ 1 ; c := c+ 2) = (U1 ∪ U2) \ C

where

U1 = valS1,β(c := c+ 1) = {(c, (), 1)}

U2 = valS2,β(c := c+ 2) = {(c, (), 3)} with S2 = valS1,β(c := c+ 1)(S1)

C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and
(f, (d1, . . . , dn), d′) ∈ U2 for some d′ 6= d}

= {(c, (), 1)}

That is, we first evaluate the sub-update c := c + 1 in state S1 yielding U1.
In order to evaluate the second sub-update, we first have to apply U1 to
state S1, which results in the state S2 that coincides with S1 except for the
interpretation of c, which is I2(c) = 1. The evaluation of c := c + 2 in S2

yields U2. From the union U1 ∪U2 we have to remove the set C of conflicting
semantic updates and finally obtain the result

valS1
(c := c+ 1 ; c := c+ 2) = {(c, (), 3)} ,

i.e., a semantic update that fixes the interpretation of the 0-ary function
symbol c to be the value 3.



3.3 Semantics 97

On the other hand, the semantics of the parallel update in state S1 is
defined as

valS1
(c := c+ 1 || c := c+ 2) = (U1 ∪ U2) \ C

where

U1 = valS1
(c := c+ 1)

U2 = valS1
(c := c+ 2)

C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and
(f, (d1, . . . , dn), d′) ∈ U2 for some d′ 6= d}

That is, we first evaluate the two parallel sub-updates, resulting in the sets
U1 = {(c, (), 1)} and U2 = {(c, (), 2)} of consistent semantic updates. Both U1

and U2 fix the interpretation of c for the same (and only) argument tuple ()
but in an inconsistent way; U1 and U2 assign c the values 1 and 2, respectively.
Such a situation is called a clash. As a consequence, the union U1∪U2 is not a
set of consistent semantics updates. To regain consistency we have to remove
those elements from the union that cause the clash. In the example, that is
the set

C = {(c, (), 1)} ,

and we obtain as the result

valS1
(c := c+ 1 || c := c+ 2) = {(c, (), 2)} .

This example shows that in case of a clash within a parallel update, the later
sub-update dominates the earlier one such that the evaluation of the second
sub-update is not affected by the first one. In contrast, with sequential updates
the first sub-update affects the second sub-update.

Not surprisingly, defining the semantics of quantified updates is rather
complicated and proceeds in two steps.

First, we determine the set D = {d ∈ DA | S, βd
x |= φ} of domain ele-

ments d ∈ DA satisfying the guard formula φ with the variable assignment βd
x.

Then, for each a ∈ D the sub-update u is evaluated with βa
x resulting in a set

of consistent semantic updates. If the quantified update is clash-free, its se-
mantics is simply the union of all these sets of semantic updates.

In general though, a quantified update might contain clashes which must
be resolved. For example, performing the steps described above for the quan-
tified update

for x; x
.
= 0 | x

.
= 1; c := 5 − x

results in the two sets U1 = {(c, (), 5)} and U2 = {(c, (), 4)} of consistent se-
mantic updates (the set of values satisfying the guard formula is {0, 1}).
The set U1 ∪ U2 is inconsistent, i.e., the quantified update is not clash-free
and we have to resolve the clashes. For this purpose it is important to
remember the value a ∈ D from the variable assignment βa

x under which



98 3 Dynamic Logic

the sub-update u was evaluated. Therefore, in Def. 3.27, we define a set
dom =

⋃

a∈{d∈DA|S,βd
x
|=φ}(valS,βa

x
(u) × {a}) consisting of pairs of (possibly in-

consistent) semantics updates (resulting from valS,βa
x
(u)) and the appropriate

value a (from βa
x). In our example, the set dom is given as

dom = {((c, (), 5), 0), ((c, (), 4), 1)}

which we use for clash resolution. The clash is resolved by considering only
one of the two semantic updates and discarding the other one. In general, to
determine which one is kept the second components a, a′ (here 0 and 1) from
the elements in dom come into play: The semantic update (f, (d1, . . . , dn), d)
with appropriate a is kept if a � a′ for all (f ′, (d′1, . . . , d

′
n), d′) with f = f ′,

n = m, di = d′i (1 ≤ i ≤ n), and appropriate a′. That is, the semantic update
arising from the least element satisfying the guard dominates. In our example
we keep (c, (), 5) and discard (c, (), 4) since 0 � 1.

This “least element” approach for clash resolution in a sense carries over
the last-win semantics of parallel updates to quantified updates. Note, that
this is not the only possibility for clash resolution (see Note 3.30).

Example 3.29. In this example we show how clashes for quantified updates are
resolved using the ordering predicate � on the domain.

Consider the update

for x; x
.
= 0 | x

.
= 1; h(0) := x .

It attempts to simultaneously assign the values 0 and 1 to the location h(0). To
keep the example simple, we assume that x ranges over the positive integers,
which allows us to chose the usual “less than or equal” ordering relation ≤.

The semantics of a clashing quantified update is given by the least (second
component of the) elements in the set dom with respect to the ordering. First,
we determine the set dom (for an arbitrary state S):

dom =
⋃

a∈{d∈DA |S,βd
x
|=(x

.
=0|x

.
=1)}(valS,βa

x
(h(0) := x) × {a})

= {valS,β0
x
(h(0) := x) × {0}, valS,β1

x
(h(0) := x) × {1}}

= {((h, (0), 0), 0), ((h, (0), 1), 1)}

since valS,β0
x
(h(0) := x) = {(h, (0), 0)} and valS,β1

x
(h(0) := x) = {(h, (0), 1)}.

Then, in the second step, we remove those elements from dom that cause
clashes. In the example, the two elements are inconsistent, and we keep only
((h, (0), 0), 0) since it has the smaller second component with respect to the
ordering ≤. That is, the result of evaluating the quantified update is the
singleton set {(h, (0), 0)} of consistent semantics updates.

As an example for a quantified update without clash consider

for x; x
.
= 0 | x

.
= 1; h(x) := 0 ,



3.3 Semantics 99

which we evaluate in some arbitrary state S. Again we assume that x ranges
over the non-negative integers. Then,

dom =
⋃

a∈{d∈DA |S,βd
x
|=x

.
=0|x

.
=1}(valS,βa

x
(h(x) := 0) × {a})

= {valS,β0
x
(h(x) := 0) × {0}, valS,β1

x
(h(x) := 0) × {1}}

= {((h, (0), 0), 0), ((h, (1), 0), 1)}

This set dom does not contain inconsistencies and, thus, the semantics of the
quantified update is {(h, (0), 0), (h, (1), 0)}.

Note 3.30. As already mentioned before there are several possibilities for defin-
ing the semantics of updates in case of a clash.

The crucial advantage of using a last-win clash semantics is that the trans-
formation of sequential updates into parallel ones becomes almost trivial and
can in practice be carried out very efficiently (⇒ Sect. 3.9.2). A last-win se-
mantics allows to postpone case distinctions resulting from the possibility of
aliasings/clashes to a later point in the proof.

Other possible strategies for handling clashes in quantified updates are
(the basic ideas are mostly taken from the thesis by Platzer [2004b]):

• Leaving the semantics of updates undefined in case of a clash. This ap-
proach is similar to how partial functions (e.g., /) are handled in KeY.
Then, a clashing update leads to a state where the location affected by
the clash has a fixed but unknown value.

• Using the notion of consistent (syntactic) updates (as it is done in ASMs)
in which no clashes occur. Following this idea, inconsistent updates would
have no effect. However, according to the experiences with the existing
version of KeY for ASMs [Nanchen et al., 2003], proving the consistency
of updates tends to be tedious.

• Making the execution of updates containing clashes indeterministic (an
arbitrary one of the clashing sub-updates is chosen). Then, however, up-
dates would no longer be deterministic modal operators. Apart from the
fact that the determinism of updates is utilised in a number of places in
KeY, transformation rules for updates become much more involved for
this clash semantics.

3.3.3 Semantics of JAVA CARD DL Terms

The valuation function for JAVA CARD DL terms is defined analogously to the
one for first-order terms, though depending on the JAVA CARD DL state.

Definition 3.31 (Semantics of JAVA CARD DL terms). Given a signa-
ture for a type hierarchy, let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke
structure, let β be a variable assignment, and let P ∈ Π be a normalised JAVA

CARD program.



100 3 Dynamic Logic

For every state S = (D, δ, I) ∈ S, the valuation function valS for terms is
inductively defined by:

valS,β(x) = β(x) for variables x

valS,β(f(t1, . . . , tn)) = I(f)(valS,β(t1), . . . , valS,β(tn))

valS,β(if φ then t1 else t2)) =

{

valS,β(t1) if S, β |= φ

valS,β(t2) if S, β 6|= φ

valS,β(ifExMinx.φ then t1 else t2)) =






valS,βd
x
(t1) if there is some d ∈ DA such that S, βd

x |= φ and

d � d′ for any d′ ∈ DA with S, βd′

x |= φ

(where A is the type of x)

valS,β(t2) otherwise

valS,β({u}(t)) = valS1,β(t) with S1 = valS,β(u)(S)

Since valS,β(t) does not depend on β if t is ground, we write valS(t) in that
case.

The function and predicate symbols of a signature are divided into disjoint
sets of rigid and non-rigid function and predicate symbols, respectively. From
Def. 3.18 follows, that rigid symbols have the same meaning in all states of a
given Kripke structure. The following syntactic criterion continues the notion
of rigidness from function symbols to terms.

Definition 3.32. A JAVA CARD DL term t is rigid

• if t = x and x ∈ VSym,
• if t = f(t1, . . . , tn), f ∈ FSymr and the sub-terms ti are rigid (1 ≤ i ≤ n),
• if t = {u}(s) and s is rigid,
• if t = (if φ then t1 else t2) and the formula φ is rigid (Def. 3.35) and

the sub-terms t1, t2 are rigid,
• if t = (ifExMinx.φ then t1 else t2) and the formula φ is rigid (Def. 3.35)

and the sub-terms t1, t2 are rigid.

Intuitively, rigid terms have the same meaning in all JAVA CARD DL states
(whereas the meaning of non-rigid terms may differ from state to state).

Lemma 3.33. Let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke struc-
ture, let P ∈ Π be a normalised JAVA CARD program, and let β be a variable
assignment.

If JAVA CARD DL term t is rigid, then

valS1,β(t) = valS2,β(t)

for any two states S1, S2 ∈ S.

The proof of the above lemma proceeds by induction on the term structure
and makes use of the fact, that by definition the leading function symbol f of
a term to be updated must be from the set FSymnr .



3.3 Semantics 101

3.3.4 Semantics of JAVA CARD DL Formulae

Definition 3.34 (Semantics of JAVA CARD DL formulae). Given a sig-
nature for a type hierarchy, let K� = (M,S, ρ) be a KeY JAVA CARD DL
Kripke structure, let β be a variable assignment, and let P ∈ Π be a nor-
malised JAVA CARD program.

For every state S = (D, δ, I) ∈ S the validity relation |= for JAVA CARD DL
formulae is inductively defined by:

• S, β |= p(t1, . . . , tn) iff (valS,β(t1), . . . , valS,β(tn)) ∈ I(p)
• S, β |= true
• S, β 6|= false
• S, β |= !φ iff S, β 6|= φ
• S, β |= (φ & ψ) iff S, β |= φ and S, β |= ψ
• S, β |= (φ | ψ) iff S, β |= φ or S, β |= ψ (or both)
• S, β |= (φ −> ψ) iff S, β 6|= φ or S, β |= ψ (or both)
• S, β |= ∀x.φ iff S, βd

x |= φ for every d ∈ DA (where A is the type of x)
• S, β |= ∃x.φ iff S, βd

x |= φ for some d ∈ DA (where A is the type of x)
• S, β |= {u}(φ) iff S1, β |= φ with S1 = valS,β(u)(S)
• S, β |= 〈p〉φ iff there exists some state S′ ∈ S such that (S, p, S′) ∈ ρ and
S′, β |= φ

• S, β |= [p]φ iff S′, β |= φ for every state S′ ∈ S with (S, p, S′) ∈ ρ

We write S |= φ for a closed formula φ, since β is then irrelevant.

Similar to rigidness of terms, we now define rigidness of formulae.

Definition 3.35. A JAVA CARD DL formula φ is rigid

• if φ = p(t1, . . . , tn), p ∈ PSymr and the terms ti are rigid (1 ≤ i ≤ n),
• if φ = true or φ = false,
• if φ = !ψ and ψ is rigid,
• φ = (ψ1 | ψ2), φ = (ψ1 & ψ2), or φ = (ψ1 −> ψ2), and ψ1, ψ2 are rigid,
• if φ = ∀x.ψ or φ = ∃x.ψ, and ψ is rigid,
• φ = {u}ψ and ψ is rigid.

Note 3.36. A formula 〈p〉ψ or [p]ψ is not rigid, even if ψ is rigid, since the
truth value of such formulas depends, e.g., on the termination behaviour of the
program statements p in the modal operator. Whether a program terminates
or not in general depends on the state the program is started in.

Intuitively, rigid formulae—in contrast to non-rigid formulae—have the
same meaning in all JAVA CARD DL states.

Lemma 3.37. Let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke structure
and let P ∈ Π be a normalised JAVA CARD program, and let β be a variable
assignment.

If a JAVA CARD DL formula φ is rigid, then



102 3 Dynamic Logic

S1, β |= φ if and only if S2, β |= φ

for any two states S1, S2 ∈ S.

Finally, we define what it means for a formula to be valid or satisfiable. A
first-order formula is satisfiable (resp., valid) if it holds in some (all) model(s)
for some (all) variable assignment(s) (⇒ Def. 2.40). Similarly, a JAVA CARD DL
formula is satisfiable (resp. valid) if it holds in some (all) state(s) of some (all)
Kripke structure(s) K� for some (all) variable assignment(s).

Definition 3.38. Given a signature for a type hierarchy and a normalised
JAVA CARD program P ∈ Π, let φ be a JAVA CARD DL formula.

φ is satisfiable if there is a KeY JAVA CARD DL Kripke structure K� =
(M,S, ρ) such that S, β |= φ for some state S ∈ S and some variable assign-
ment β.

Given a KeY JAVA CARD DL Kripke structure K� = (M,S, ρ), the for-
mula φ is K�-valid, denoted by K� |= φ, if S, β |= φ for all states S ∈ S and
all variable assignments β

φ is logically valid, denoted by |= φ, if K� |= φ for all KeY JAVA CARD DL
Kripke structures K�.

Note 3.39. Satisfiability and validity for JAVA CARD DL coincide with the
corresponding notions in first-order logic (Def. 2.40), i.e., if a first-order for-
mula φ is satisfiable (valid) in first-order logic then φ is satisfiable (valid) in
JAVA CARD DL.

Note 3.40. The notions of satisfiability, K�-validity, and logical validity of
a formula depend on the given type hierarchy and normalised JAVA CARD

program, and are not preserved if one of the two is modified—as the following
simple example shows.

Suppose a type hierarchy contains an abstract type A with Null as its only
subtype. Then the formula ∀x.x

.
= null, where x is of type A, is valid since

DA consists only of the element null to which the term null evaluates.
Now we modify the type hierarchy and add a dynamic type B that is a

subtype of A and a supertype of Null. By definition, the domain of a dynamic
type is non-empty, and, since B is a subtype of A, DA contains at least one
element d 6= null with d ∈ DB . As a consequence, φ is not valid in the modified
type hierarchy.

The following example shows that validity does not only depend on the
given type hierarchy but also on the JAVA CARD DL program (which is, of
course, more obvious). Suppose the type hierarchy contains the dynamic type
Base with dynamic subtype SubA, and the normalised JAVA CARD program
shown below is given:



3.3 Semantics 103

JAVA
lass Base {

2 int m() {return 0;

4 }

6 publi
 stati
 void start(Base o) {int i=o.m();

8 }

}

10 
lass SubA extends Base {

12 int m() {return 0;

14 }

}

JAVA

Consider the method invocation o.m(); in line 7. Both the implementation
of m in class Base and the one in class SubA may be chosen for execution. The
choice depends on the dynamic type of the domain element that o evaluates
to—resulting in a case distinction.

Nevertheless, the formula

〈i=Base.start(o);〉i
.
= 0 ,

where o:Base ∈ FSymnr , is valid because both implementations of m() re-
turn 0.

Now we modify the implementation of method m() in class SubA by re-
placing the statement return 0; with return 1;. Then, φ is no longer valid
since now there are values of o for which method invocation o.m(); yields the
return value 1 instead of 0.

Instead of modifying the implementation of method m() in class SubA one
could also add another class SubB extending Base with an implementation of
m() that return a “wrong” result, making φ invalid.

The examples given here clearly show that in general the validity of a
formula depends on the given type hierarchy and on the program that is con-
sidered. As is explained in Sect. 8.5, as a consequence, any proof is in principle
invalidated if the program is modified (e.g., by adding a new subclass) and
needs to be redone. However, validity is not always lost if the program is
modified and Sect. 8.5 presents methods for identifying situations where it is
preserved.

Example 3.41. We now check the formulae from Example 3.15 for validity.

|= {c := 0} (c
.
= 0) since in the state in which c

.
= 0 is evaluated, c is

indeed 0 (due to the update).



104 3 Dynamic Logic

6|= ({c := 0} c)
.
= c since ({c := 0}c) evaluates to 0 in any state but

there are states in which c (the right side) is differ-
ent from 0.

|= sal !
.
= null −> 〈ArrayList.demo2(sal);〉j

.
= 1

since after invocation of ArrayList.demo2(sal)

with an argument sal different from null the local
variable j has the value 1.

6|= {sal := null}〈ArrayList.demo2(sal);〉j
.
= 1

since j has the value 0 when the program termi-
nates if started in a state with sal

.
= null. Due to

the update sal := only such states are considered
and, thus, this formula is even unsatisfiable.

6|= {v := g}(〈ArrayList al=new ArrayList(); v=al.inc(v);〉v
.
= g + 1)

since the JAVA CARD addition arg+1 in method inc

causes a so-called overflow for n = 2147483647
(⇒ Chap. 12), in which case v has the negative
value −2147483648 6= 2147483647 + 1.

6|= {v := g}(〈ArrayList al=new ArrayList();

v=al.inc(v)@ArrayList〉v
.
= g + 1)

This formula has the same semantics as the previ-
ous one since in this case the method-body state-
ment v=al.inc(v)@ArrayList is equivalent to the
method call v=al.inc(v) (because there are no
subclasses of ArrayList overriding method inc).

|= 〈int v=0;〉v
.
= 0 since the program always terminates in state with

v
.
= 0.

Example 3.42. The following two examples deal with functions that have a
predefined fixed semantics (i.e., the same semantics in all Kripke seeds) only
on parts of the domain. We consider the division function / (written infix in
the following), which has a predefined interpretation for {(x, y) ∈ integer×
integer | y 6= 0} while the interpretation for {(x, y) ∈ integer× integer |
y = 0} depends on the particular Kripke seed.

K� |= 5/c
.
= 1 in any K� with Kripke seed M = (T0,D0, δ0, D0, I0)

such that
• I0(c) = 5 or
• I0(c) = 0 and I0(5/0) = 1.

|= 5/c
.
= 5/c since 5/c

.
= 5/c holds in any state S of any K�

(even if valS(c) = 0).

3.3.5 JAVA CARD-reachable States

As mentioned before, the set of states that are reachable by JAVA CARD pro-
grams is a subset of the states of a JAVA CARD DL Kripke structure. Indeed,
a state is (only) JAVA CARD-reachable if it satisfies the following conditions:



3.3 Semantics 105

1. A finite number of objects are created.4

2. Reference type attributes of non-null objects are either null or point to
some other created object. Similarly, all entries of reference-type arrays
different from null are either null or point to some created object.

3. For any array a the dynamic type δ(a[i]) of the array entries is a subtype
of the element type A of the dynamic type A[ ] = δ(a) of a (violating this
condition in JAVA leads to an ArrayStoreException).

Given a type hierarchy (T , Td, Ta,⊑), a signature, and a normalised JAVA

CARD program P ∈ Π the above conditions can be expressed with JAVA

CARD DL formulae as follows (the implicit fields like, e.g., <nextToCreate>
and the function T::get() used in the following formulae are defined formally
in Sect. 3.6.6):

1. For all dynamic types T ∈ Td \ {Null} with T ⊑ Object that occur in P :

T.<nextToCreate>>= 0 &
∀x.(x >= 0 & x < T.<nextToCreate><−>

T::get(x).<created>
.
= TRUE)

where x ∈ VSym is of type integer.
By definition, an object o is created iff its index (which is the in-
teger i for which the equation o

.
= C::get(i) holds) is in the inter-

val [0, C.<nextToCreate>[. This guarantees that only a finite number of
objects are created. The above formula expresses the consistency between
the implicit attribute T::get(x).<created> and the definition of created-
ness for any type T .

2. (i) For all types T ∈ T \ {⊥,Null} with T ⊑ Object that occur in P
and for all non-rigid function symbols f : T → T ′ ∈ FSymnr with
T ′ ⊑ Object that are declared as an attribute of T in P :

∀o.(o.<created>
.
= TRUE & o !

.
= null) −>

(o.f
.
= null | o.f.<created>

.
= TRUE))

where o ∈ VSym is of type T .
(ii) For all array types T [ ] ∈ T that occur in P

∀a.∀x.(a.<created>
.
= TRUE & a !

.
= null) −>

(a[x]
.
= null | a[x].<created>

.
= TRUE))

where a ∈ VSym is of type T [ ] and x ∈ VSym of type integer.
3. For all array types T [ ] ∈ T that occur in P :

∀a.∀x.((a.<created>
.
= TRUE & a !

.
= null) −>

arrayStoreValid(a, a[x]))

4 In JAVA CARD DL, objects are represented by domain elements, and the domain is
assumed to be constant (see Note 3.19 on page 89). Whether an object is created
or not is indicated by a Boolean function <created> (⇒ Sect. 3.6.6).



106 3 Dynamic Logic

where a ∈ VSym is of type T [ ] and x ∈ VSym of type integer (see
App. A.2.2 for the semantics of the predicate arrayStoreValid).

Thus, there is a reachability formula for each type T , each reference type
attribute, and each array type that occurs in the program P . Since the con-
junction of all these may result in a quite lengthy formula, we introduce the
non-rigid predicate inReachableState which, by definition, holds in a state S
iff all the above formulae hold in S.

There are some more constraints restricting the set of JAVA CARD-reachable
states dealing with class initialisation. For example, an initialised class is not
erroneous. However, since class initialisation is not handled in this book we do
not go into details here and omit the corresponding constraints (for a detailed
account on class initialisation the reader is referred to [Bubel, 2001]). Please
note that the KeY system can handle class initialisation.

Example 3.43. Consider the following JAVA CARD program

JAVA
lass Control {

Data data;

}
lass Data {int d;

}

JAVA

We assume a specification of class Data that consists of the invariant

∀data.(data.<created>
.
= TRUE −> data.d >= 0)

(where data ∈ VSym is of type Data), stating that, for all created objects of
type Data, the value of the attribute d is non-negative.

Now, we would like to prove that for any object c of type Control that is
created and different from null, the value of the attribute c.data.d is non-
negative. With the semantics of JAVA CARD in mind, this seems to be a valid
property given the invariant of class Data. However, the corresponding JAVA

CARD DL formula

∀data.(data.<created>
.
= TRUE −> data.d >= 0) −>

(c.<created>
.
= TRUE & c !

.
= null & c.data !

.
= null −>

c.data.d >= 0)

is (surprisingly) not valid. The reason is that we cannot establish the as-
sumption of the invariant of class Data, since we cannot prove that the equa-
tion c.data.<created>

.
= TRUE holds, i.e., that c.data refers to a created

object (even if we know that c.data is different from null). In JAVA CARD



3.3 Semantics 107

it is always true that a non-null attribute of a created non-null object points
to a created object. In our logic, however, we have to make this explicit by
adding the assumption inReachableState stating that we are in a JAVA CARD-
reachable state. We obtain

(inReachableState &
∀data.(data.<created>

.
= TRUE −> data.d >= 0)) −>

(c.<created>
.
= TRUE & c !

.
= null & c.data !

.
= null −>

c.data.d >= 0)

One conjunct of inReachableState is the formula

∀o.(o.<created>
.
= TRUE & o !

.
= null) −>

(o.data
.
= null | o.data.<created>

.
= TRUE))

where o ∈ VSym is of type Data. If we instantiate the universal quantifier in
this formula with c we can derive the desired equation

c.data.<created>
.
= TRUE .

This example shows that there are formulae that are true in all JAVA CARD-
reachable states but that are not valid in JAVA CARD DL. This problem can
be overcome by adding the predicate inReachableState to the invariants of the
program to be verified. Then, states that are not reachable by any JAVA CARD

program are excluded from consideration.

Dealing with the inReachableState Predicate in Proofs

When a correctness proof is started, the KeY system automatically adds the
predicate inReachableState to the precondition of the specification. In the ma-
jority of cases, proofs can be completed without considering inReachableState .
There are however situations that require the use of inReachableState:

(i) The proof can only be closed by employing (parts of) the properties stated
in inReachableState (as in Example 3.43).

(ii) A state (described by some update) must be shown to satisfy the predi-
cate inReachableState. Such a situation occurs, for example, when using
a method contract (i.e., the specification of a method) in a proof. Then
it is necessary to establish the precondition of the method specification,
which usually contains the predicate inReachableState, in the invocation
state (⇒ Sect. 3.8).

In both situations, expanding inReachableState into its components is not
feasible since in practice the resulting formula would consist of hundreds or
thousands of conjuncts.

To deal with situation (i), the KeY calculus provides rules that allow the
user to extract parts of inReachableState that are necessary to close the proof.

To prevent full expansion of inReachableState in the case that



108 3 Dynamic Logic

inReachableState −> {u} inReachableState

must be shown for some update u (situation (ii)), the KeY system per-
forms a syntactic analysis of the update u and expands only those parts of
inReachableState that possibly are affected by u.

Note, that in general an update u that results from the symbolic execu-
tion of some program cannot describe a state that violates inReachableState .
However, the user might provide such a malicious update that leads to an
unreachable state by, for example, applying the cut rule (⇒ Sect. 3.5.2).

3.4 The Calculus for JAVA CARD DL

3.4.1 Sequents, Rules, and Proofs

The KeY system’s calculus for JAVA CARD DL is a sequent calculus. It extends
the first-order calculus from Chapter 2.

Sequents are defined as in the first-order case (Def. 2.42). The only differ-
ence is that now the formulae in the sequents are JAVA CARD DL formulae.

Definition 3.44. A sequent is of the form Γ =⇒ ∆, where Γ,∆ are sets of
closed JAVA CARD DL formulae.

The left-hand side Γ is called antecedent and the right-hand side ∆ is
called succedent of the sequent.

As in the first-order case, the semantics of a sequent

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is the same as that of the formula

(φ1 & . . . & φm) −> (ψ1 | . . . | ψm) .

In Chapter 2 we have used an informal notion of what a rule is, and what
a rule application is. Now, we give a more formal definition.

Definition 3.45. A rule R is a binary relation between (a) the set of all tuples
of sequents and (b) the set of all sequents.

If R(〈P1, . . . , Pk〉, C) (k ≥ 0), then the conclusion C is derivable from the
premisses P1, . . . , Pk using rule R.

The set of sequents that are derivable is the smallest set such that: If there
is a rule in the (JAVA CARD DL) calculus that allows to derive a sequent S
from premisses that are all derivable, then S is derivable in C.

A calculus—in particular our JAVA CARD DL calculus—is formally a set
of rules.

Proof trees are defined as in the first-order case (Def. 2.50), except that
now the rules of the JAVA CARD DL calculus (as described in Sections 3.5–3.9)
are used for derivation instead of the first-order rules. Intuitively, a proof for a
sequent S is a derivation of S written as a tree with root S, where the sequent
in each node is derivable from the sequents in its child nodes.



3.4 The Calculus for JAVA CARD DL 109

3.4.2 Soundness and Completeness of the Calculus

Soundness

The most important property of the JAVA CARD DL calculus is soundness,
i.e., everything that is derivable is valid and only valid formulae are derivable.

Proposition 3.46 (Soundness). If a sequent Γ =⇒ ∆ is derivable in
the JAVA CARD DL calculus (Def. 3.45), then it is valid, i.e., the formula
∧
Γ −>

∨
∆ is logically valid (Def. 3.38).

It is easy to show that the whole calculus is sound if and only if all its rules
are sound. That is, if the premisses of any rule application are valid sequents,
then the conclusion is valid as well.

Given the soundness of the existing core rules of the JAVA CARD DL calcu-
lus, the user can add new rules, whose soundness must then be proven w.r.t.
the existing rules (⇒ Sect. 4.5).

Validating the Soundness of the JAVA CARD DL Calculus

So far, we have no intention of formally proving the soundness of the
JAVA CARD DL calculus, i.e., the core rules that are not user-defined (the
soundness of user-defined rules can be verified within the KeY system, see
Sect. 4.5). Doing so would first require a formal specification of the JAVA

CARD language. No official formal semantics of JAVA or JAVA CARD is avail-
able though. Furthermore, proving soundness of the calculus requires the
use of a higher-order theorem proving tool, and it is a tedious task due
to the high number of rules. Resources saved on a formal soundness proof
were instead spent on further improvement of the KeY system. We refer
to [Beckert and Klebanov, 2006] for a discussion of this policy and fur-
ther arguments in its favour. On the other hand, the KeY project performs
ongoing cross-verification against other JAVA formalisations to ensure the
faithfulness of the calculus.

One such effort compares the KeY calculus with the Bali semantics [von
Oheimb, 2001a], which is a JAVA Hoare logic formalised in Isabelle/HOL.
KeY rules are translated manually into Bali rules. These are then shown
sound with respect to the rules of the standard Bali calculus. The published
result [Trentelman, 2005] describes in detail the examination of the rules
for local variable assignment, field assignment and array assignments.

Another validation was carried out by Ahrendt et al. [2005b]. A refer-
ence JAVA semantics from [Farzan et al., 2004] was used, which is formalised
in Rewriting Logic [Meseguer and Rosu, 2004] and mechanised in the input
language of the Maude system. This semantics is an executable specifica-
tion, which together with Maude provides a JAVA interpreter. Considering
the nature of this semantics, we concentrated on using it to verify our
program transformation rules. These are rules that decompose complex ex-
pressions, take care of the evaluation order, etc. (about 45% of the KeY



110 3 Dynamic Logic

calculus). For the cross-verification, the Maude semantics was “lifted” in
order to cope with schematic programs like the ones appearing in calculus
rules. The rewriting theory was further extended with means to generate
valid initial states for the involved program fragments, and to check the
final states for equivalence. The result is used in frequent completely auto-
mated validation runs, which is beneficial, since the calculus is constantly
extended with new features.

Furthermore, the KeY calculus is regularly tested against the compiler
test suite Jacks (available at www.sourceware.org/mauve/jacks.html).
The suite is a collection of intricate programs covering many difficult fea-
tures of the JAVA language. These programs are symbolically executed with
the KeY calculus and the output is compared to the reference provided by
the suite.

Relative Completeness

Ideally, one would like a program verification calculus to be able to prove all
statements about programs that are true, which means that all valid sequents
should be derivable. That, however, is impossible because JAVA CARD DL in-
cludes first-order arithmetic, which is already inherently incomplete as es-
tablished by Gödel’s Incompleteness Theorem [Gödel, 1931] (discussed in
Sect. 2.7). Another, equivalent, argument is that a complete calculus for JAVA

CARD DL would yield a decision procedure for the Halting Problem, which is
well-known to be undecidable. Thus, a logic like JAVA CARD DL cannot ever
have a calculus that is both sound and complete.

Still, it is possible to define a notion of relative completeness [Cook, 1978],
which intuitively states that the calculus is complete “up to” the inherent
incompleteness in its first-order part. A relatively complete calculus contains
all the rules that are necessary to prove valid program properties. It only may
fail to prove such valid formulae whose proof would require the derivation of
a non-provable first-order property (being purely first-order, its provability
would be independent of the program part of the calculus).

Proposition 3.47 (Relative Completeness). If a sequent Γ =⇒ ∆ is valid,
i.e., the formula

∧
Γ −>

∨
∆ is logically valid (Def. 3.38), then there is a

finite set ΓFOL of logically valid first-order formulae such that the sequent

ΓFOL, Γ =⇒ ∆

is derivable in the JAVA CARD DL calculus.

The standard technique for proving that a program verification calculus is
relatively complete [Harel, 1979] hinges on a central lemma expressing that for
all JAVA CARD DL formulae there is an equivalent purely first-order formula.

www.sourceware.org/mauve/jacks.html


3.4 The Calculus for JAVA CARD DL 111

A completeness proof for the object-oriented dynamic logic ODL [Beckert
and Platzer, 2006], which captures the essence of JAVA CARD DL, is given
by Platzer [2004b].

3.4.3 Rule Schemata and Schema Variables

The following definition makes use of the notion of schema variables. They
represent concrete syntactical elements (e.g., terms, formulae or programs).
Every schema variable is assigned a kind that determines which class of con-
crete elements is represented by such a schema variable.

Definition 3.48. A rule schema is of the form

P1 P2 · · · Pk

C
(k ≥ 0)

where P1, . . . , Pk and C are schematic sequents, i.e., sequents containing
schema variables.

A rule schema P1 · · ·Pk /C represents a rule R if the following equivalence
holds: a sequent C∗ is derivable from premisses P ∗

1 , . . . , P
∗
k iff P ∗

1 · · ·P ∗
k /C

∗ is
an instance of the rule schema. Schema instances are constructed by instanti-
ating the schema variables with syntactical constructs (terms, formulae, etc.)
which are compliant to the kinds of the schema variables. One rule schema
represents infinitely many rules, namely, its instances.

There are many cases, where a basic rule schema is not sufficient for de-
scribing a rule. Even if its general form adheres to a pattern that is describable
in a schema, there may be details in a rule that cannot be expressed schemat-
ically. For example, in the rules for handling existential quantifiers, there is
the restriction that (Skolem) constants introduced by a rule application must
not already occur in the sequent. When a rule is described schematically, such
constraints are added as a note to the schema.

All the rules of our calculus perform one (or more) of the following actions:

• A sequent is recognised as an axiom, and the corresponding proof branch
is closed.

• A formula in a sequent is modified. A single formula (in the conclusion of
the rule) is chosen to be in focus. It can be modified or deleted from the
sequent. Note, that we do not allow more than one formula to be modified
by a rule application.

• Formulae are added to a sequent. The number of formulae that are added
is finite and is the same for all possible applications of the same rule
schema.

• The proof branches. The number of new branches is the same for all
possible applications of the same rule schema.



112 3 Dynamic Logic

Moreover, whether a rule is applicable and what the result of the application
is, depends on the presence of certain formulae in the conclusion.

The above list of possible actions excludes, for example, rules performing
changes on all formulae in a sequent or that delete all formulae with a certain
property.

Thus, all our rules preserve the “context” in a sequent, i.e., the formulae
that are not in the focus of the rule remain unchanged. Therefore, we can
simplify the notation of rule schemata, and leave this context out. Similarly,
an update that is common to all premisses can be left out (this is formalised in
Def. 3.49). Intuitively, if a rule “φ =⇒ ψ / φ′ =⇒ ψ′” is correct, then φ′ =⇒ ψ′

can be derived from φ =⇒ ψ in all possible contexts. In particular, the rule
then is correct in a context described by Γ,∆,U , i.e., in all states s for which
there is a state s0 such that Γ =⇒ ∆ is true in s0 and s is reached from s0
by executing U . Therefore, “Γ, Uφ =⇒ Uψ∆ / Γ Uφ′ =⇒ Uψ′, ∆” is a correct
instance of “φ =⇒ ψ / φ′ =⇒ ψ′”, and Γ,∆,U do not have to be included in
the schema. Instead we allow them to be added during application. Note,
however, that the same Γ,∆,U have to be added to all premisses of a rule
schema.

Later in the book (e.g., Sect. 3.7) we will present a few rules where the
context cannot be omitted. Such rules are indicated with the (∗) symbol.
These rules will be shown for comparison only; they are not part of the JAVA

CARD DL calculus.

Definition 3.49. If

φ1
1, . . . , φ

1
m1

=⇒ ψ1
1 , . . . , ψ

1
n1

...
φk

1 , . . . , φ
k
mk

=⇒ ψk
1 , . . . , ψ

k
nk

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is an instance of a rule schema, then

Γ, Uφ1
1, . . . ,Uφ

1
m1

=⇒ Uψ1
1 , . . . ,Uψ

1
n1
, ∆

...
Γ, Uφk

1 , . . . ,Uφ
k
mk

=⇒ Uψk
1 , . . . ,Uψ

k
nk
, ∆

Γ, Uφ1, . . . ,Uφm =⇒ Uψ1, . . . ,Uψn, ∆

is an inference rule of our DL calculus, where U is an arbitrary syntactic
update (including the empty update), and Γ,∆ are finite sets of context for-
mulae.

If, however, the symbol (∗) is added to the rule schema, the context Γ,∆,U
must be empty, i.e., only instances of the schema itself are inference rules.

The schema variables used in rule schemata are all assigned a kind that
determines which class of concrete syntactic elements they represent. In the



3.4 The Calculus for JAVA CARD DL 113

following sections, we often do not explicitly mention the kinds of schema
variables but use the name of the variables to indicate their kind. Table 3.1
gives the correspondence between names of schema variables that represent
pieces of JAVA code and their kinds. In addition, we use the schema variables
φ, ψ to represent formulae and Γ,∆ to represent sets of formulae. Schema
variables of corresponding kinds occur also in the taclets used to implement
rules in the KeY system (⇒ Sect. 4.2).

Table 3.1. Correspondence between names of schema variables and their kinds

π non-active prefix of JAVA code (Sect. 3.4.4)
ω “rest” of JAVA code after the active statement (Sect. 3.4.4)
p, q JAVA code (arbitrary sequence of statements)
e arbitrary JAVA expression
se simple expression, i.e., any expression whose evaluation, a priori,

does not have any side-effects. It is defined as one of the following:
(a) a local variable
(b) this.a , i.e., an access to an instance attribute via the target

expression this (or, equivalently, no target expression)
(c) an access to a static attribute of the form t.a, where the target

expression t is a type name or a simple expression
(d) a literal
(e) a compile-time constant
(f) an instanceof expression with a simple expression as the first

argument
(g) a this reference
An access to an instance attribute o.a is not simple because a
NullPointerException may be thrown

nse non-simple expression, i.e., any expression that is not simple (see
above)

lhs simple expression that can appear on the left-hand-side of an as-
signment. This amounts to the items (a)–(c) from above

v , v0 , . . . local program variables (i.e., non-rigid constants)
a attribute
l label
args argument tuple, i.e., a tuple of expressions
cs sequence of catch clauses
mname name of a method
T type expression
C name of a class or interface

If a schema variable T representing a type expression is indexed with the
name of another schema variable, say e, then it only maches with the JAVA

type of the expression with which e is instantiated. For example, “Tw v = w”
matches the JAVA code “int i = j” if and only of the type of j is int (and
not, e.g., byte).



114 3 Dynamic Logic

3.4.4 The Active Statement in a Modality

The rules of our calculus operate on the first active statement p in a modality
〈πpω〉 or [πpω]. The non-active prefix π consists of an arbitrary sequence of
opening braces “{”, labels, beginnings “try{” of try-catch-finally blocks,
and beginnings “method-frame(. . .){” of method invocation blocks. The pre-
fix is needed to keep track of the blocks that the (first) active command is
part of, such that the abruptly terminating statements throw, return, break,
and continue can be handled appropriately.

The postfix ω denotes the “rest” of the program, i.e., everything except
the non-active prefix and the part of the program the rule operates on (in
particular, ω contains closing braces corresponding to the opening braces in π).
For example, if a rule is applied to the following JAVA block operating on its
first active command “i=0;”, then the non-active prefix π and the “rest” ω
are the indicated parts of the block:

l:{try{
︸ ︷︷ ︸

π

i=0; j=0; } finally{ k=0; }}
︸ ︷︷ ︸

ω

No Rule for Sequential Composition

In versions of dynamic logic for simple programming languages, where no
prefixes are needed, any formula of the form 〈pq〉φ can be replaced by
〈p〉〈q〉φ. In our calculus, decomposing of 〈πpqω〉φ into 〈πp〉〈qω〉φ is not
possible (unless the prefix π is empty) because πp is not a valid program;
and the formula 〈πpω〉〈πqω〉φ cannot be used either because its semantics
is in general different from that of 〈πpqω〉φ.

3.4.5 The Essence of Symbolic Execution

Our calculus works by reducing the question of a formula’s validity to the
question of the validity of several simpler formulae. Since JAVA CARD DL for-
mulae contain programs, the JAVA CARD DL calculus has rules that reduce
the meaning of programs to the meaning of simpler programs. For this reduc-
tion we employ the technique of symbolic execution [King, 1976]. Symbolic
execution in JAVA CARD DL resembles playing an accordion: you make the
program longer (though simpler) before you can make it shorter.

For example, to find out whether the sequent

=⇒ 〈o.next.prev=o;〉o.next.prev
.
= o

is valid, we symbolically execute the JAVA code in the diamond modality. At
first, the calculus rules transform it into an equivalent but longer (albeit in a
sense simpler) sequence of statements:

=⇒ 〈ListEl v; v=o.next; v.prev=o;〉o.next.prev
.
= o .



3.4 The Calculus for JAVA CARD DL 115

This way, we have reduced the reasoning about the complex expression
o.next.prev=o to reasoning about several simpler expressions. We call this
process unfolding, and it works by introducing fresh local variables to store
intermediate computation results.

Now, when analysing the first of the simpler assignments (after removing
the variable declaration), one has to consider the possibility that evaluating
the expression o.next may produce a side effect if o is null (in that case an
exception is thrown). However, it is not possible to unfold o.next any further.
Something else has to be done, namely a case distinction. This results in the
following two new goals:

o !
.
= null =⇒ {v := o.next}〈v.prev=o;〉o.next.prev

.
= o

o
.
= null =⇒ 〈throw new NullPointerException();〉o.next.prev

.
= o

Thus, we can state the essence of symbolic execution: the JAVA code in the
formulae is step-wise unfolded and replaced by case distinctions and syntactic
updates.

Of course, it is not a coincidence that these two ingredients (case distinc-
tions and updates) correspond to two of the three basic programming con-
structs. The third basic construct are loops. These cannot in general be treated
by symbolic execution, since using symbolic values (as opposed to concrete
values) the number of loop iterations is unbounded. Symbolically executing a
loop, which is called “unwinding”, is useful and even necessary, but unwind-
ing cannot eliminate a loop in the general case. To treat arbitrary loops, one
needs to use induction (⇒ Chap. 11) or loop invariants (⇒ Sect. 3.7.1). Also,
certain kinds of loops can be translated into quantified updates [Gedell and
Hähnle, 2006].

Method invocations can be symbolically executed, replacing a method call
by the method’s implementation. However, it is often useful to instead use a
method’s contract so that it is only symbolically executed once—during the
proof that the method satisfies its contract—instead of executing it for each
invocation.

3.4.6 Components of the Calculus

Our JAVA CARD DL calculus has five major components, which are described
in detail in the following sections. Since the calculus consists of hundreds of
rules, however, we cannot list them all in this book. Instead, we give typical
examples for the different rule types and classes (a complete list can be found
on the KeY project website).

In particular, we usually only give the rule versions for the diamond modal-
ity 〈·〉. The rules for box modality [·] are mostly the same—notable exceptions
are the rules for handling loops (Sect. 3.7) and some of the rules for handling
abrupt termination (Sect. 3.6.7).

The five components of the JAVA CARD DL calculus are:



116 3 Dynamic Logic

1. Non-program rules, i.e., rules that are not related to particular program
constructs. This includes first-order rules, rules for data-types (in partic-
ular the integers), rules for modalities (e.g., rules for empty modalities),
and the induction rule.

2. Rules that work towards reducing/simplifying the program and replacing
it by a combination of case distinction (proof branches) and sequences of
updates. These always (and only) apply to the first active statement. A
“simpler” program may be syntactically longer; it is simpler in the sense
that expressions are not as deeply nested or have less side-effects.

3. Rules that handle loops for which no fixed upper bound on the number
of iterations exists. In this chapter, we only consider rules that handle
loops using loop invariants (Sect. 3.7). A separate chapter is dedicated to
handling loops by induction (Chapter 11).

4. Rules that replace a method invocation by the method’s contract.
5. Update simplification.

Component 2 is the core for handling JAVA CARD programs occurring in for-
mulae. These rules can be applied automatically, and they can do everything
needed for handling programs except evaluating loops and using method spec-
ifications.

The overall strategy is to use the rules in Component 2, interspersed with
applications of rules in Component 3 and Component 4 for handling loops
resp. methods, to step-wise eliminate the program and replace it by updates
and case distinctions. After each step, Component 5 is used to simplify/elim-
inate updates. The final result of this process are sequents containing pure
first-order formulae. These are then handled by Component 1.

The symbolic execution process is for the most part done automatically by
the KeY system. Usually, only handling loops and methods may require user
interaction. Also, for solving the first-order problem that is left at the end of
the symbolic execution process, the KeY system often needs support from the
user (or from the decision procedures integrated into KeY, see Chapter 10).

3.5 Calculus Component 1: Non-program Rules

3.5.1 First-order Rules

Since first-order logic is part of JAVA CARD DL, all the rules of the first-order
calculus introduced in Chapter 2 are also part of the JAVA CARD DL calculus.
That is, all rules from Fig. 2.2 (classical first-order rules), Fig. 2.3 (equality
rules), Fig. 2.4 (typing rules), and Fig. 2.5 (arithmetic rules) can be applied
to JAVA CARD DL sequents—even if the formulae that they are applied to are
not purely first-order.

Consider, for example, the rule impRight. In Chapter 2, the rule schema
for this rule takes the following form:



3.5 Calculus Component 1: Non-program Rules 117

impRight (Chapter 2 notation)
Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

In this chapter, we omit the context Γ,∆ from rule schemata (⇒ Sect. 3.4.3),
i.e., the same rule is schematically written as:

impRight
φ =⇒ ψ

=⇒ φ −> ψ

When this schema is instantiated, a context consisting of Γ,∆ and an update U
can be added, and the schema variables φ, ψ can be instantiated with formulae
that are not purely first-order. For example, the following is an instance of
impRight:

x
.
= 1, {x := 0}(x

.
= y) =⇒ {x := 0}〈m();〉(y

.
= 0)

x
.
= 1 =⇒ {x := 0}(x

.
= y −> 〈m();〉(y

.
= 0))

where Γ = (x
.
= 1), ∆ is empty, and the context update is U = {x := 0}.

Due to the presence of modalities and non-rigid functions, which do not
exist in purely first-order formulae, different parts of a formula may have to
be evaluated in different states. Therefore, the application of some first-order
rules that rely on the identity of terms in different parts of a formula needs
to be restricted. That affects rules for universal quantification and equality
rules.

Restriction of Rules for Universal Quantification

The rules for universal quantification have the following form:

allLeft
∀x.φ, [x/t](φ) =⇒

∀x.φ =⇒
exRight

=⇒ ∃x.φ, [x/t](φ)

=⇒ ∃x.φ
where t ∈ TrmA′ is a rigid ground term

whose type A′ is a sub-type of the type A of x

In the first-order case, the term t that is instantiated for the quantified vari-
able x can be an arbitrary ground term. In JAVA CARD DL, however, we have
to add the restriction that t is a rigid ground term (Def. 3.32). The reason is
that, though an arbitrary value can be instantiated for x as it is universally
quantified, in each individual instantiation, all occurrences of x must have the
same value.

Example 3.50. The formula ∀x.(x
.
= 0 −> 〈i++;〉(x

.
= 0)) is logically valid, but

instantiating the variable x with the non rigid constant i is wrong as it leads
to the unsatisfiable formula i

.
= 0 −> 〈i++;〉(i

.
= 0)).



118 3 Dynamic Logic

In practice, it is often very useful to instantiate a universally quantified
variable x with the value of a non-rigid term t. That, however, is not easily
possible as x must not be instantiated with a non-rigid term. In that case,
one can add the logically valid formula ∃y.(y

.
= t) to the left of the sequent,

Skolemise that formula, which yields csk
.
= t, and then instantiate x with the

rigid constant csk (this is done using the rule substToEq).
Rules for existential quantification do not have to be restricted because

they introduce rigid Skolem constants anyway.

Restriction of Rules for Equalities

The equality rules (Fig. 2.3) are part of the JAVA CARD DL calculus but an
equality t1

.
= t2 may only be used for rewriting if

• both t1 and t2 are rigid terms (Def. 3.32), or
• the equality t1

.
= t2 and the occurrence of ti that is being replaced are

(a) not in the scope of two different program modalities and (b-1) not in
the scope of two different updates or (b-2) in the scope of syntactically
identical updates (in fact, it is also sufficient if the two updates are only
semantically identical, i.e., have the same effect). This same-update-level
property is explained in more detail in Sect. 4.4.1.

Example 3.51. The sequent

x
.
= v + 1 =⇒ {v := 2}(v + 1

.
= 3)

is valid. But applying the equality to the occurrence of v + 1 on the right side
of the sequent is wrong, as it would lead to the sequent

x
.
= v + 1 =⇒ {v := 2}(x

.
= 3)

that is satisfiable but not valid.
In the sequent

{v := 2}(x
.
= v + 1) =⇒ {v := 2}(v + 1

.
= 3) ,

however, both the equality and the term being replaced occur in the scope of
identical updates and, thus, the equality rule can be applied.

3.5.2 The Cut Rule and Lemma Introduction

The cut rule

cut
=⇒ φ φ =⇒

=⇒

allows to introduce a lemma φ, which is an arbitrary JAVA CARD DL formula.
The lemma occurs in the succedent of the left premiss (where, intuitively



3.6 Calculus Component 2: Reducing JAVA Programs 119

speaking, the lemma has to be proved) and in the antecedent of the right
premiss (where, intuitively speaking, the lemma can be used). One can also
view the cut rule as a case distinction on whether φ is true or not as the right
premiss is equivalent to =⇒ !φ.

Using the cut rule in the right way can greatly reduce the length of proofs.
However, since the cut formula φ is arbitrary, the cut rule is not analytic and
non-deterministic. That is the reason why it is not included in the calculus
for first-order logic (it is not needed for completeness). In the KeY system it
is only applied interactively when the user can choose a useful cut formula
based on his or her knowledge and intuition.

The cut rule introduces a lemma φ that is proved in the particular context
in which it is introduced. Thus, it can only be used in that context. It can,
for example, not be used in the context of an update U since φ does not
imply {U} φ. Another way to introduce a lemma is to define a new calculus
rule and prove its soundness (⇒ Sect. 4.5). That way, a lemma φ can be
introduced that can be used in any context (provided that φ is shown to be
logically valid).

3.5.3 Non-program Rules for Modalities

The JAVA CARD DL calculus contains some rules that apply to modal operators
and are, thus, not first-order rules but that are neither related to a particular
JAVA construct.

The most important representatives of this rule class are the following two
rules for handling empty modalities:

emptyDiamond
=⇒ φ

=⇒ 〈〉φ
emptyBox

=⇒ φ

=⇒ [ ]φ

The rule

diamondToBox
=⇒ [p]φ =⇒ 〈p〉true

=⇒ 〈p〉φ

relates the diamond modality to the box modality. It allows to split a total
correctness proof into a partial correctness proof and a separate proof for
termination. Note, that this rule is only sound for deterministic programming
languages like JAVA CARD.

3.6 Calculus Component 2: Reducing JAVA Programs

3.6.1 The Basic Assignment Rule

In JAVA—like in other object-oriented programming languages—different ob-
ject variables can refer to the same object. This phenomenon, called aliasing,
causes serious difficulties for handling assignments in a calculus (a similar



120 3 Dynamic Logic

problem occurs with syntactically different array indices that may refer to the
same array element).

For example, whether or not the formula o1.a
.
= 1 still holds after the ex-

ecution of the assignment “o2.a = 2;” depends on whether or not o1 and o2

refer to the same object. Therefore, JAVA assignments cannot be symbolically
executed by syntactic substitution, as done, for instance, in classical Hoare
Logic. Solving this problem naively—by doing a case split—is inefficient and
leads to heavy branching of the proof tree.

In the JAVA CARD DL calculus we use a different solution. It is based on
the notion of updates, which can be seen as “semantic substitutions”. Evalu-
ating {loc := val}φ in a state is equivalent to evaluating φ in a modified state
where loc evaluates to val , i.e., has been “semantically substituted” with val
(see Sect. 3.2 for a discussion and a comparison of updates with assignments
and substitutions).

The KeY system uses special simplification rules to compute the result
of applying an update to terms and formulae that do not contain programs
(⇒ Sect. 3.9). Computing the effect of an update to a formula 〈p〉φ is delayed
until p has been symbolically executed using other rules of the calculus. Thus,
case distinctions are not only delayed but can often be avoided altogether,
since (a) updates can be simplified before their effect has to be computed,
and (b) their effect is computed when a maximal amount of information is
available (namely after the symbolic execution of the whole program).

The basic assignment rule thus takes the following simple form:

assignment
=⇒ {loc := val}〈π ω〉φ

=⇒ 〈π loc = val; ω〉φ

That is, it just turns the assignment into an update. Of course, this does not
solve the problem of computing the effect of the assignment. This problem is
postponed and solved later by the rules for simplifying updates.

Furthermore—and this is important—this “trivial” assignment rule is cor-
rect only if the expressions loc and val satisfy certain restrictions. The rule is
only applicable if neither the evaluation of loc nor that of val can cause any
side effects. Otherwise, other rules have to be applied first to analyze loc and
val . For example, these other rules would replace the formula 〈x = ++i;〉φ
with 〈i = i+1; x = i;〉φ, before the assignment rule can be applied to derive
first {i := i+1}〈x = i;〉φ and then {i := i+1}{x := i}〈〉φ.

3.6.2 Rules for Handling General Assignments

There are four classes of rules in the JAVA CARD DL calculus for treating
general assignment expressions (that may have side-effects). These classes—
corresponding to steps in the evaluation of an assignment—are induced by
the evaluation order rules of JAVA:

1. Unfolding the left-hand side of the assignment.



3.6 Calculus Component 2: Reducing JAVA Programs 121

2. Saving the location.
3. Unfolding the right-hand side of the assignment.
4. Generating an update.

Of particular importance is the fact that though the right-hand side of an
assignment can change the variables appearing in the left hand side, it cannot
change the location scheduled for assignment, which is saved before the right-
hand side is evaluated.

Step 1: Unfolding the Left-Hand Side

In this first step, the left-hand side of an assignment is unfolded if it is a
non-simple expression, i.e., if its evaluation may have side-effects. One of the
following rules is applied depending on the form of the left-hand side expres-
sion. In general, these rules work by introducing a new local variable v0, to
which the value of a sub-expression is assigned.

If the left-hand side of the assignment is a non-atomic field access—which
is to say it has the form nse.a, where nse is a non-simple expression—then
the following rule is used:

assignmentUnfoldLeft
=⇒ 〈π Tnse v0=nse; v0.a=e; ω〉φ

=⇒ 〈π nse.a=e; ω〉φ

Applying this rule yields an equivalent but simpler program, in the sense that
the two new assignments have simpler left-hand sides, namely a local variable
resp. an atomic field access.

Unsurprisingly, in the case of arrays, two rules are needed, since both the
array reference and the index have to be treated. First, the array reference is
analysed:

assignmentUnfoldLeftArrayReference

=⇒ 〈π Tnse v0 = nse; v0[e]=e0; ω〉φ

=⇒ 〈π nse[e]=e0; ω〉φ

Then, the rule for analysing the array index can be applied:

assignmentUnfoldLeftArrayIndex

=⇒ 〈π Tv va = v; Tnse v0 = nse; va[v0]=e; ω〉φ

=⇒ 〈π v[nse]=e; ω〉φ

Step 2: Saving the Location

After the left-hand side has been unfolded completely (i.e., has the form v ,
v.a or v[se]), the right-hand side has to be analysed. But before doing this,
we have to memorise the location designated by the left-hand side. The reason
is that the location affected by the assignment remains fixed even if evaluating
the right-hand side of the assignment has a side effect changing the location



122 3 Dynamic Logic

to which the left-hand side points. For example, if i
.
= 0, then a[i] = ++i;

has to update the location a[0] even though evaluating the right-hand side
of the assignment changes the value of i to 1.

Since there is no universal “location” or “address-of” operator in JAVA,
this memorising looks different for different kinds of expressions appearing
on the left. The choice here is between field resp. array accesses. For local
variables, the memorising step is not necessary, since the “location value” of
a variable is syntactically defined and cannot be changed by evaluating the
right-hand side.

We will start with the rule variant where a field access is on the left.
It takes the following form; the components of the premiss are explained in
Table 3.2:

assignmentSaveLocation

=⇒ 〈π check; memorise; unfoldr; update; ω〉φ

=⇒ 〈π v.a=nse; ω〉φ

Table 3.2. Components of rule assignmentSaveLocation for field accesses v.a=nse

check if (v==null) throw new abort if v is null

NullPointerException();

memorise Tv v0 = v;

unfoldr Tnse v1 = nse; set up Step 3

update v0.a = v1; set up Step 4

There is a very similar rule for the case where the left-hand side is an array
access, i.e., the assignment has the form v[se]=nse. The components of the
premiss for that case are shown in Table 3.3.

Table 3.3. Components of rule assignmentSaveLocation for array accesses v[se]=nse

check if (se>=v.length || se<0) throw new abort if index
ArrayIndexOutOfBoundsException(); out of boundsa

memorise Tv v0 = v; Tse v1 = se;

unfoldr Tnse v2 = nse; set up Step 3

update v0[v1] = v2; set up Step 4
a This includes an implicit test that v is not null when v.length is analysed.



3.6 Calculus Component 2: Reducing JAVA Programs 123

Step 3: Unfolding the Right-Hand Side

In the next step, after the location that is changed by the assignment has been
memorised, we can analyse and unfold the right hand side of the expression.
There are several rules for this, depending on the form of the right-hand side.
As an example, we give the rule for the case where the right-hand side is a
field access nse.a with a non-simple object reference nse:

assignmentUnfoldRight

=⇒ 〈π Tnse v0 = nse; v = v0.a; ω〉φ

=⇒ 〈π v = nse.a; ω〉φ

The case when the right-hand side is a method call is discussed in the section
on method calls (⇒ Sect. 3.6.5).

Step 4: Generate an Update

The fourth and final step of treating assignments is to turn them into an
update. If both the left- and the right-hand side of the assignment are simple
expressions, the basic assignment rule applies:

assignment
=⇒ {lhs := se∗}〈π ω〉φ

=⇒ 〈π lhs = se; ω〉φ

The value se∗ appearing in the update is not identical to the se in the program
because creating the update requires replacing any JAVA operators in the
program expression se by their JAVA CARD DL counterparts in order to obtain
a proper logical term. For example, the JAVA division operator / has to be
replaced by the function symbol jdiv (which is different from the standard
mathematical division /, as explained in Chap. 12). The KeY system performs
this conversion automatically to construct se∗ from se. The complete list of
predefined JAVA CARD DL operators is given in App. A.

If there is an atomic field access v.a either on the left or on the right of
the assignment, no further unfolding can be done and the possibility has to
be considered here that the object reference may be null, which would result
in a NullPointerException. Depending on whether the field access is on the
left or on the right of the assignment one of the following rules applies:

assignment

v !
.
= null =⇒ {v0 := v.a@Class}〈π ω〉φ

v = null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v0 = v.a; ω〉φ

assignment

v !
.
= null =⇒ {v.a@Class := se∗}〈π ω〉φ

v = null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v.a = se; ω〉φ



124 3 Dynamic Logic

A further complication is caused by field hiding. Hiding occurs when derived
classes declare fields with the same name as in the superclass. The exact field
reference has to be inferred from the static type of the target expression and
the program context, in which the reference appears. Since logical terms do
not have a program context, hidden fields have to be disambiguated. This can
be achieved by an up-front renaming (as proposed in Def. 3.10), or (as done
in the KeY system) with on-the-fly disambiguation in the assignment rule. It
adds a qualifier @Class to the name of the field as the field migrates from the
program into the update. The pretty-printer does not display the qualifier if
there is no hiding.

For array access, we have to consider the possibility of an ArrayIndexOut-

OfBoundsException in addition to that of a NullPointerException. Thus,
the rule for array access on the right of the assignment takes the following
form (there is a slightly more complicated rule for array access on the left):

assignment

v !
.
= null, se∗ >= 0, se∗ < v .length =⇒ {v0 := v[se∗]}〈π ω〉φ

v = null =⇒ 〈π throw new NullPointerException(); ω〉φ
v !

.
= null, (se∗ < 0 | se∗ >= v .length) =⇒
〈π throw new ArrayIndexOutOfBoundsException(); ω〉φ

=⇒ 〈π v0 = v[se]; ω〉φ

3.6.3 Rules for Conditionals

Most if-else statements have a non-simple expression (i.e., one with potential
side-effects) as their condition. In this case, we unfold it in the usual manner
first. This is achieved by the rule

ifElseUnfold

=⇒ 〈π boolean v = nse; if (v) p else q ω〉φ

=⇒ 〈π if (nse) p else q ω〉φ

where v is a fresh boolean variable.
After dealing with the non-simple condition, we will eventually get back to

the if-else statement, this time with the condition being a variable and, thus,
a simple expression. Now it is time to take on the case distinction inherent in
the statement. That can be done using the following rule:

ifElseSplit

se
.
= TRUE =⇒ 〈π p ω〉φ

se
.
= FALSE =⇒ 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

While perfectly functional, this rule has several drawbacks. First, it uncon-
ditionally splits the proof, even in the presence of additional information.
However, the program or the sequent may contain the explicit knowledge that



3.6 Calculus Component 2: Reducing JAVA Programs 125

the condition is true (or false). In that case, we want to avoid the proof split
altogether. Second, after the split, the condition se appears on both branches,
and we then have to reason about the same formula twice.

A better solution is the following rule that translates a program with an
if-else statement into a conditional formula:

ifElse
=⇒ if(se

.
= TRUE) then 〈π p ω〉φ else 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

Note that the if-then-else in the premiss of the rule is a logical and not a
program language construct (⇒ Def. 3.14).

The ifElse rule solves the problems of the ifElseSplit rule described above.
The condition se only has to be considered once. And if additional information
about its truth value is available, splitting the proof can be avoided. If no such
information is available, however, it is still possible to replace the propositional
if-then-else operator with its definition, resulting in

(se
.
= TRUE) −> 〈π p ω〉φ & (se !

.
= TRUE) −> 〈π q ω〉φ

and carry out a case distinction in the usual manner.
A problem that the above rule does not eliminate is the duplication of

the code part ω. Its double appearance in the premiss means that we may
have to reason about the same piece of code twice. Leino [2005] proposes a
solution for this problem within a verification condition generator system.
However, to preserve the advantages of a symbolic execution, the KeY system
here sacrifices some efficiency for the sake of usability. Fortunately, this issue
is hardly ever limiting in practice.

The rule for the switch statement, which also is conditional and leads to
case distinctions in proofs, is not shown here. It transforms a switch statement
into a sequence of if statements.

3.6.4 Unwinding Loops

The following rule “unwinds” while loops. Its application is the prerequisite
for symbolically executing the loop body. Unfortunately, just unwinding a loop
repeatedly is only sufficient for its verification if the number of loop iterations
has a known upper bound. And it is only practical if that number is small (as
otherwise the proof gets too big).

If the number of loop iterations is not bound, the loop has to be verified
using (a) induction (⇒ Chap. 11) or (b) an invariant rule (⇒ Sect. 3.7.1, 3.7.4).
If induction is used, the unwind rule is also needed as the loop has to be
unwound once in the step case of the induction.

In case the loop body does not contain break or continue statements
(which is the standard case), the following simple version of the unwind rule
can be applied:



126 3 Dynamic Logic

loopUnwind
=⇒ 〈π if (e) { p while (e) p } ω〉φ

=⇒ 〈π while (e) p ω〉φ

Otherwise, in the general case where break and/or continue occur, the fol-
lowing more complex rule version has to be used:

loopUnwind

=⇒ 〈π if (e) l ′:{ l ′′:{ p′ } l1:. . .ln:while (c) { p } } ω〉φ

=⇒ 〈π l1:. . .ln:while (e) { p } ω〉φ

where

• l ′ and l ′′ are new labels,
• p′ is the result of (simultaneously) replacing in p

– every “break li” (for 1 ≤ i ≤ n) and every “break” (with no label)
that has the while loop as its target by break l ′, and

– every “continue li” (for 1 ≤ i ≤ n) and every “continue” (with no
label) that has the while loop as its target by break l ′′.

(The target of a break or continue statement with no label is the loop
that immediately encloses it.)

The label list l1:. . .ln: usually has only one element or is empty, but in general
a loop can have more than one label.

In the “unwound” instance p′ of the loop body p, the label l ′ is the new
target for break statements and l ′′ is the new target for continue statements,
which both had the while loop as target before. This results in the desired be-
haviour: break abruptly terminates the whole loop, while continue abruptly
terminates the current instance of the loop body.

A continue (with or without label) is never handled directly by a JAVA

CARD DL rule, because it can only occur in loops, where it is always trans-
formed into a break statement by the loop rules.

3.6.5 Replacing Method Calls by their Implementation

Symbolic execution deals with method invocations by syntactically replacing
the call by the called implementation (verification via contracts is described
in Sect. 3.8). To obtain an efficient calculus we have conservatively extended
the programming language (⇒ Def. 3.12) with two additional constructs: a
method body statement, which allows us to precisely identify an implementa-
tion, and a method-frame block, which records the receiver of the invocation
result and marks the boundaries of the inlined implementation.

Evaluation of Method Invocation Expressions

The process of evaluating a method invocation expression (method call) within
our JAVA CARD DL calculus consists of the following steps:



3.6 Calculus Component 2: Reducing JAVA Programs 127

1. Identifying the appropriate method.
2. Computing the target reference.
3. Evaluating the arguments.
4. Locating the implementation (or throwing a NullPointerException).
5. Creating the method frame.
6. Handling the return statement.

Since method invocation expressions can take many different shapes, the cal-
culus contains a number of slightly differing rules for every step. Also, not
every step is necessary for every method invocation.

Step 1: Identify the Appropriate Method

The first step is to identify the appropriate method to invoke. This involves
determining the right method signature and the class where the search for an
implementation should begin. Usually, this process is performed by the com-
piler according to the (quite complicated) rules of the JAVA language specifi-
cation and considering only static information such as type conformance and
accessibility modifiers. These rules have to be considered as a background
part of our logic, which we will not describe here though, but refer to the
JAVA language specification instead. In the KeY system this process is per-
formed internally (it does not require an application of a calculus rule), and
the implementation relies on the Recoder metaprogramming framework to
achieve the desired effect (recoder.sourceforge.net).

For our purposes, we discern three different method invocation modes:

Instance or “virtual” mode. This is the most common mode. The target ex-
pression references an object (it may be an implicit this reference), and
the method is not declared static or private. This invocation mode requires
dynamic binding.

Static mode. In this case, no dynamic binding is required. The method to
invoke is determined in accordance with the declared static type of the
target expression and not the dynamic type of the object that this expres-
sion may point to. The static mode applies to all invocations of methods
declared static. The target expression in this case can be either a class
name or an object referencing expression (which is evaluated and then
discarded). The static mode is also used for instance methods declared
private.

Super mode. This mode is used to access the methods of the immediate su-
perclass. The target expression in this case is the keyword super. The
super mode bypasses any overriding declaration in the class that contains
the method invocation.

Below, we present the rules for every step in a method invocation. We
concentrate on the virtual invocation mode and discuss other modes only
where significant differences occur.

recoder.sourceforge.net


128 3 Dynamic Logic

Step 2: Computing the Target Reference

The following rule applies if the target expression of the method invocation
is not a simple expression and may have side-effects. In this case, the method
invocation gets unfolded so that the target expression can be evaluated first.

methodCallUnfoldTarget

=⇒ 〈π Tnse v0 = nse; lhs = v0.mname(args); ω〉φ

=⇒ 〈π lhs = nse.mname(args); ω〉φ

This step is not performed if the target expression is the keyword super or
a class name. For an invocation of a static method via a reference expression,
this step is performed, but the result is discarded later on.

Step 3: Evaluating the Arguments

If a method invocation has arguments, they have to be completely evaluated
before control is transferred to the method body. This is achieved by the
following rule:

methodCallUnfoldArguments

=⇒ 〈π Tel1
v1=el1 ;

...
Telk

vk=elk;

lhs = se.mname(a1,...,an);

ω〉φ

=⇒ 〈π lhs = se.mname(e1,...,en); ω〉φ

The rule unfolds the arguments using fresh variables in the usual manner.
However, only those argument expressions ei get unfolded that are non-simple.
We refer to the non-simple argument expressions as el1 . . . elk . The rule only
applies if k > 0, i.e., there is at least one non-simple argument expression. The
expressions ai used in the premiss of the rule are then defined by:

ai =

{

ei if ei is a simple expression

vi if ei is a non-simple expression

In the instance invocation mode, the target expression se must be simple
(otherwise the rules from Step 2 apply). Furthermore, argument evaluation
has to happen even if the target reference is null, which is not checked until
the next step.

Step 4: Locating the Implementation

This step has two purposes in our calculus: to bind the argument values to the
formal parameters and to simulate dynamic binding (for instance invocations).
Both are achieved with the following rule:



3.6 Calculus Component 2: Reducing JAVA Programs 129

methodCall

se
.
= null =⇒ 〈π throw new NullPointerException(); ω〉φ

se !
.
= null =⇒ 〈π Tlhs v0; paramDecl; ifCascade ; lhs = v0; ω〉φ

=⇒ 〈π lhs = se.mname(se1,. . .,sen); ω〉φ

The code piece paramDecl introduces and initialises new local variables that
later replace the formal parameters of the method. That is, paramDecl abbre-
viates

Tse1
p1 = se1; . . . Tsen

pn = sen;

The code schema ifCascade simulates dynamic binding. Using the signa-
ture of mname, we extract the set of classes that implement this particular
method from the given JAVA program. Due to the possibility of method over-
riding, there can be more than one class implementing a particular method. At
runtime, an implementation is picked based on the dynamic type of the target
object—a process known as dynamic binding. In our calculus, we have to do
a case distinction as the dynamic type is in general not known. We employ
a sequence of nested if statements that discriminate on the type of the tar-
get object and refer to the distinct method implementations via method-body

statements (⇒ Def. 3.12). Altogether, ifCascade abbreviates:

if (se instanceof C1)

v0=se.mname(p1,. . .,pn)@C1;

else if (se instanceof C2)

v0=se.mname(p1,. . .,pn)@C2;
...
else if (se instanceof Ck−1)

v0=se.mname(p1,. . .,pn)@Ck−1;

else v0=se.mname(p1,. . .,pn)@Ck;

The order of the if statements is a bottom-up latitudinal search over all classes
C1, . . . , Ck of the class inheritance tree that implement mname(. . .). In other
words, the more specialised classes appear closer to the top of the cascade.
Formally, if i < j then Cj 6⊑ Ci.

If the invocation mode is static or super no ifCascade is created. The single
appropriate method body statement takes its place. Furthermore, the check
whether se is null is omitted in these modes, though not for private methods.

Step 5: Creating the Method Frame

In this step, the method-body statement v0=se.mname(. . .)@Class is replaced
by the implementation of mname from the class Class and the implementation
is enclosed in a method frame:



130 3 Dynamic Logic

methodBodyExpand

=⇒ 〈π method-frame(result->lhs,
source=Class,
this=se

) : { body } ω〉φ

〈π lhs=se.mname(v1,. . .,vn)@Class; ω〉φ =⇒

in the implementation body the formal parameters of mname are syntactically
replaced by v1, . . . , vn.

Step 6: Handling the return Statement

The final stage of handling a method invocation, after the method body has
been symbolically executed, involves committing the return value (if any) and
transferring control back to the caller. We postpone the description of treating
method termination resulting from an exception (as well as the intricate inter-
action between a return statement and a finally block) until the following
section on abrupt termination.

The basic rule for the return statement is:

methodCallReturn

=⇒ 〈π method-frame(...):{ v=se; } ω〉φ

=⇒ 〈π method-frame(result->v, ...) : { return se; p } ω〉φ

We assume that the return value has already undergone the usual unfolding
analysis, and is now a simple expression se. Now, we need to assign it to the
right variable v within the invoking code. This variable is specified in the head
of the method frame. A corresponding assignment is created and v disappears
from the method frame. Any trailing code p is also discarded.

After the assignment of the return value is symbolically executed, we are
left with an empty method frame, which can now be removed altogether. This
is achieved with the rule

methodCallEmpty
=⇒ 〈π ω〉φ

=⇒ 〈π method-frame(. . .) : { } ω〉φ

In case the method is void or if the invoking code simply does not assign
the value of the method invocation to any variable, this fact is reflected by
the variable v missing from the method frame. Then, slightly simpler versions
of the return rule are used, which do not create an assignment.

Example for Handling a Method Invocation

Consider the example program from Fig. 3.3. The method nextId() returns
for a given integer value id some next available value. In the Base class this
method is implemented to return id+1. The class SubA inherits and retains



3.6 Calculus Component 2: Reducing JAVA Programs 131

Base

start()
int nextId(int)

SubA

SubB

int nextId(int)

publi
 
lass Base {publi
 int nextId(int i) {return ++i;

}

}publi
 
lass SubA extends Base {

}publi
 
lass SubB extends Base {publi
 int nextId(int i) {return super.nextId(i)+1;
}

}

Fig. 3.3. An example program with method overriding

this implementation. The class SubB overrides the method to return id+2,
which is done by increasing the result of the implementation in Base by one.

We now show step by step how the following code, which invokes the
method nextId() on an object of type SubB, is symbolically executed:

JAVA

Base o = new SubB();

res = o.nextId(i);

JAVA

First, the instance creation is handled, after which we are left with the actual
method call. The effect of the instance creation is reflected in the updates
attached to the formula, which we do not show here. Since the target refer-
ence o is already simple at this point, we skip Step 2. The same applies to the
arguments of the method call and Step 3. We proceed with Step 4, applying
the rule methodCall. This gives us two branches. One corresponds to the case
where o is null, which can be discharged using the knowledge that o points
to a freshly created object. The other branch assumes that o is not null and
contains a formula with the following JAVA code (in the following, program
part A is transformed into A′, B into B′ etc.):



132 3 Dynamic Logic

JAVAint j; {int i_1 = i;if (o instan
eof SubB)

j=o.nextId(i_1)@SubB;else
j=o.nextId(i_1)@Base;

}

A

res=j;

JAVA

After dealing with the variable declarations, we reach the if-cascade simulating
dynamic binding. In this case we happen to know the dynamic type of the
object referenced by o. This eliminates the choice and leaves us with a method
body statement pointing to the implementation from SubB:

JAVA

j=o.nextId(i_1)@SubB; A′

res=j;

JAVA

Now it is time for Step 5, unfolding the method body statement and creating
a method frame. This is achieved by the rule methodBodyExpand:

JAVA

method -frame(result ->j, source=SubB , this=o) : {return super.nextId(i_1)+1; B

}

A′′

res=j;

JAVA

The method implementation has been inlined above. We start to execute it
symbolically, unfolding the expression in the return statement in the usual
manner, which gives us after some steps:

JAVA

method-frame(result->j, source=SubB, this=o) : {int j_2 = super.nextId(i_1); C

j_1=j_2+1;return j_1;

B′

}

res=j;

JAVA



3.6 Calculus Component 2: Reducing JAVA Programs 133

The active statement is now again a method invocation, this time with the
super keyword. The method invocation process starts again from scratch.
Steps 2 and 3 can be omitted for the same reasons as above. Step 4 gives us
the following code. Note that there is no if-cascade, since no dynamic binding
needs to be performed.

JAVA

method-frame(result->j, source=SubB, this=o) : {int j_3; {int i_2 = i_1;

j_3=o.nextId(i_2)@Base;

}

j_2=j_3;

C′

j_1=j_2+1;return j_1;

}

res=j;

JAVA

Now it is necessary to remove the declarations and perform the assignments
to reach the method body statement j_3=o.nextId(i_2)@Base;. Then, this
statement can be unpacked (Step 5), and we obtain two nested method frames.
The second method frame retains the value of this, while the implementation
source is now taken from the superclass:

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(result ->j_3 , source=Base , this=o) : {return ++i_2; D

}

j_2=j_3;

C′′

j_1=j_2+1;return j_1;

}

res=j;

JAVA

The return expression is unfolded until we arrive at a simple expression. The
actual return value is recorded in the updates attached to the formula. The
code in the formula then is:



134 3 Dynamic Logic

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(result ->j_3 , source=Base , this=o) : {return j_4; D′

}

E

j_2=j_3;

j_1=j_2+1;return j_1;

}

res=j;

JAVA

Now we can perform Step 6 (rule methodCallReturn), which replaces the
return statement of the inner method frame with the assignment to the vari-
able j_3. We know that j_3 is the receiver of the return value, since it was
identified as such by the method frame (this information is removed with the
rule application).

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(source=Base , this=o) : {

j_3=j_4;

}

E′

j_2=j_3;

j_1=j_2+1;return j_1;

}

res=j;

JAVA

The assignment j_3=j_4; can be executed as usual, generating an update,
and we obtain an empty method frame.

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(source=Base , this=o) : {

}
E′′

j_2=j_3;

j_1=j_2+1;return j_1;

}

res=j;

JAVA



3.6 Calculus Component 2: Reducing JAVA Programs 135

The empty frame can be removed with the rule methodCallEmpty, complet-
ing Step 6. The invocation depth has now decreased again. We obtain the
program:

JAVA

method-frame(result->j, source=SubB, this=o) : {

j_2=j_3;

j_1=j_2+1;return j_1;

}

res=j;

JAVA

From here, the execution continues in an analogous manner. The outer method
frame is eventually removed as well.

3.6.6 Instance Creation and Initialisation

In this section we cover the process of instance creation and initialisation. We
do not go into details of array creation and initialisation, since it is sufficiently
similar.

Instance Creation and the Constant Domain Assumption

JAVA CARD DL, like many modal logics, operates under the technically useful
constant domain semantics (all program states have the same universe). This
means, however, that all instances that are ever created in a program have to
exist a priori. To resolve this seeming paradox, we introduce object repositories
with access functions and implicit fields that allow to change and query the
program-visible instance state (created, initialised, etc.). These implicit fields
behave as the usual class or instance attributes, except that they are not
declared by the user but by the logic designer. To distinguish them from
normal (user declared) attributes, their names are enclosed in angled brackets.
According to their use we distinguish object state and repository fields. An
overview of the used implicit fields is given in Table 3.4.

Definition 3.52. Given a non-abstract class type C, the object repository
RepC is the set of all domain elements e of dynamic type C:

RepC := {e ∈ D0 | δ(e) = C}

Note, that RepC does not contain the objects of type D even if D is a subtype
of C.

Allocating a new object requires to access the corresponding object repos-
itory. Therefore, we introduce access functions for the object repositories.



136 3 Dynamic Logic

Definition 3.53. For each non-abstract class type C there is a predefined
rigid function symbol

C::get : integer→ C

called repository access function.
Restricted to the set of non-negative integers, C::get is interpreted as a

bijective mapping onto the object repository RepC of type C. For negative
integers, C::get is also defined, but its values are unknown.

Given a JAVA CARD DL Kripke structure, the index of an object o is the
non-negative integer i for which the equation I(C::get)(i) = o holds.

Example 3.54. Since the dynamic type function δ(·) is only defined for a
model, it cannot be used within the logic. We must take another way to
express with a formula that a term (“expression”) evaluates (“refers”) to a
domain element (“object”) of a given dynamic type. The repository access
functions allow us to do it concisely. For example the formula

∃i : integer.(o
.
= C::get(i))

holds iff the term o evaluates to a domain element of dynamic type C (ex-
cluding, among other, elements of any type D, which might be a subtype
of C).

To model instance allocation appropriately, we must ensure that the new
object is not already in use. Therefore, we declare an implicit static integer
field <nextToCreate> for each non-abstract class type C.

We call an object created, if its index is greater or equal to zero and less
than the value of <nextToCreate>. When an instance of dynamic type T is
allocated by a JAVA program, the instance with T.<nextToCreate> as object
index is used and <nextToCreate> is incremented by one. In all states that are
reachable by a JAVA program (⇒ Sect. 3.3.5), the value of <nextToCreate>
is non-negative.

Table 3.4. Implicit object repository and status fields

Modifier Implicit field Declared in Explanationprivatestati
 int <nextToCreate> T the index of the object
to be taken the next time
when a new T(. . .)
expression is evaluatedprote
ted boolean <created> Object indicates whether the object
has been createdprote
ted boolean <initialised> Object indicates whether the object
has been initialised



3.6 Calculus Component 2: Reducing JAVA Programs 137

Further, there is the implicit boolean instance field <created> declared in
java.lang.Object, which is supported mainly for convenience. This field is
set for an object during the instance creation process.

Example 3.55. Consider an instance invariant of class A (a property that must
hold for every object of class A or any class derived from A, in each observable
state) that states that the field head declared in A must always be non-null.

With <created> this can be formalised concisely as:

∀a : A.(a.<created>
.
= TRUE −> (a.head !

.
= null))

Using <nextToCreate> and the repository access functions, in contrast, would
yield a complicated formula, and even require enumerating all subtypes of A
in it.

The JAVA Instance Initialisation Process

We use an approach to handle instance creation and initialisation that is based
on program transformation. The transformation reduces a JAVA program p to
a program p′ such that the behaviour of p (with initialisation) is the same
as that of p′ when initialisation is disregarded. This is done by inserting code
into p that explicitly executes the initialisation.

The transformation inserts code for explicitly executing all initialisation
processes. To a large extent, the inserted code works by invoking implicit class
or instance methods (similar to implicit fields), which do the actual work. An
overview of all implicit methods introduced is given in Table 3.5.

Table 3.5. Implicit methods for object creations and initialisation declared in every
non-abstract type T (syntactic conventions from Figure 3.4)

Static methods

public static T <createObject>() main method for instance creation and
initialisation

private static T <allocate>() allocation of an unused object from the
object repository

Instance methods

protected void <prepare>() assignment of default values to all instance
fields

mods T <init>(params) execution of instance initialisers and the
invoked constructor

The transformation covers all details of initialisation in JAVA, except that
we only consider non-concurrent programs and no reflection facilities (in par-
ticular no instances of java.lang.Class). Initialisation of classes and in-
terfaces (also known as static initialisation) is fully supported for the single



138 3 Dynamic Logic

threaded case. KeY passes the static initialisation challenge stated by Jacobs
et al. [2003]. We omit the treatment of this topic here for space reasons though.
In the following we use the schematic class form that is stated in Figure 3.4.

mods0 
lass T {

mods1 T1 a1 = initExpression1 ;

...

modsm Tm am = initExpressionm ;

{

initStatementm+1 ;

...

initStatement l ;

}

mods T (params) {

st1 ;

...

stn ;

}

...

}

Fig. 3.4. Initialisation part in a schematic class

Example 3.56. Figure 3.5 shows a class Person and its mapping to the
schematic class declaration of Figure 3.4. There is only one initialiser state-
ment in class Person, namely “id = 0”, which is induced by the correspond-
ing field declaration of id.
lass Person {private int id = 0;publi
 Person(int persID) {

id = persID;

}

}

mods0 7→ −
T 7→ Person

mods1 7→ private

T1 7→ int

a1 7→ id

initExpression1 7→ 0

mods 7→ public

params 7→ int persID

st1 7→ id = persID

Fig. 3.5. Example for the mapping of a class declaration to the schema of Fig. 3.4



3.6 Calculus Component 2: Reducing JAVA Programs 139

To achieve a uniform presentation we also stipulate that:

1. The default constructor public T() exists in T in case no explicit con-
structor has been declared.

2. Unless T = Object, the statement st1 must be a constructor invocation. If
this is not the case in the original program, “super();” is added explicitly
as the first statement.

Both of these conditions reflect the actual semantics of JAVA.

The Rule for Instance Creation and Initialisation

The instance creation rule

instanceCreation

=⇒ 〈π T v0 = T.<createObject>();

v0.<init>(args);
v0.<initialised> = true;

v = v0;
ω〉φ

=⇒ 〈π v = new T(args); ω〉φ

replaces an instance creation expression “v = new T(args)” by a sequence
of statements. These can be divided into three phases, which we examine in
detail below:

1. obtain the next available object from the repository (as explained above,
it is not really “created”) and assign it to a fresh temporary variable v0

2. prepare the object by assigning all fields their default values
3. initialise the object of v0 and subsequently mark it as initialised. Finally,

assign v0 to v

The reason for assigning to v in the last step is to ensure correct behaviour
in case initialisation terminates abruptly due to an exception.5

Phase 1: Instance Creation

The implicit static method <createObject>() (⇒ Fig. 3.6) declared in each
non-abstract class T returns the next available object from the object repos-
itory of type T after setting its fields to default values.

<createObject>() delegates the actual interaction with the object repos-
itory to yet another helper, an implicit method called <allocate>(). The
<allocate>() method has no JAVA implementation, its semantics is given by
the following rule instead:

5 Nonetheless, JAVA does not prevent creating and accessing partly initialised ob-
jects. This can be done, for example, by assigning the object reference to a static
field during initialisation. This behaviour is modelled faithfully in the calculus. In
such cases the preparation phase guarantees that all fields have a definite value.



140 3 Dynamic Logicpubli
 stati
 T <createObject >() {

// Get an unused instance from the object repository
T newObject = T .<allocate >();

newObject .<transient> = 0;

newObject .<initialized > = false;
// Invoke the preparation method to assign default values to
// instance fields

newObject .<prepare >();

// Return the newly created object in order to initialise it:return newObject ;

}

Fig. 3.6. Implicit method <createObject>()

allocateInstance

=⇒ {lhs := T :: get(T.<nextToCreate>)}
{lhs .<created> := true}

{T .<nextToCreate> := T .<nextToCreate>+ 1}〈π ω〉φ

=⇒ 〈π lhs = T.<allocate>(); ω〉φ

The rule ensures that after termination of <allocate>():

• The object that has index <nextToCreate> (in the pre-state) is allocated
and returned.

• Its <created> field has been set to true.
• The field <nextToCreate> has been increased by one.

Note that the mathematical arithmetic addition is used to specify the incre-
ment of field <nextToCreate>. This is the reason for using a calculus rule to
define <allocate>() instead of JAVA code. An unbounded number of objects
could not be modelled with bounded integer data types of JAVA.

Phase 2: Preparation

The next phase during the execution of <createObject>() is the preparation
phase. All fields, including the ones declared in the superclasses, are assigned
their default values.6 Up to this point no user code is involved, which ensures
that all field accesses by the user observe a definite value. This value is given
by the function defaultValue that maps each type to its default value (e.g.,
int to 0). The concrete default values are specified in the JAVA language
specification [Gosling et al., 2000, § 4.5.5]. The method <prepare>() used for
preparation is shown in Figure 3.7.

6 Since class declarations are given beforehand this is possible with a simple enu-
meration. In case of arrays, a quantified update is used to achieve the same effect,
even when the actual array size is not known.



3.6 Calculus Component 2: Reducing JAVA Programs 141prote
ted void <prepare >() {

// Prepare the fields declared in the superclass. . .super.<prepare >(); // unless T = Object

// Then assign each field ai of type Ti declared in T

// to its default value:
a1 = defaultValue(T1);

. . .
am = defaultValue(Tm);

}

Fig. 3.7. Implicit method <prepare>()

Note 3.57. In the KeY system, <createObject>() does not call <prepare>()
on the new object directly. Instead it invokes another implicitly declared
method called <prepareEnter>(), which has private access and whose body
is identical to the one of <prepare>(). The reason is that due to the super

call in <prepare>()’s body, its visibility must be at least protected such that
a direct call would trigger dynamic method dispatching, which is unnecessary
and would lead to a larger proof.

Phase 3: Initialisation

After the preparation of the new object, the user-defined initialisation code
can be processed. Such code can occur

• as a field initialiser expression “T attr = val;” (e.g., (*) in Figure 3.8);
the corresponding initialiser statement is attr = val ;

• as an instance initialiser block (similar to (**) in Figure 3.8); such a block
is also an initialiser statement;

• within a constructor body (like (***) in Figure 3.8).

For each constructor mods T(params) of T we provide a constructor
normal form mods T <init>(params), which includes (1) the initialisation
of the superclass, (2) the execution of all initialiser statements in source code
order, and finally (3) the actual constructor body. In the initialisation phase
the arguments of the instance creation expression are evaluated and passed
on to this constructor normal form. An example of the normal form is given
in Figure 3.8.

The exact blueprint for building a constructor normal form is shown in
Figure 3.9, using the conventions of Figure 3.4. Due to the uniform class form
assumed above, the first statement st1 of every original constructor is either an
alternate constructor invocation or a superclass constructor invocation (with
the notable exception of T = Object). Depending on this first statement, the
normal form of the constructor is built to do one of two things:

1. st1 = super(args): Recursive re-start of the initialisation phase for the
superclass of T . If T = Object stop. Afterwards, initialiser statements



142 3 Dynamic Logic
lass A {

(*) private int a = 3;

(**) {a++;}publi
 int b;

(***) private A() {

a = a + 2;

}

(***) publi
 A(int i) {this();
a = a + i;

}

...

private <init >() {super.<init >();
a = 3;

{a++;}

a = a + 2;

}publi
 <init >(int i) {this.<init >();
a = a + i;

}

}

Fig. 3.8. Example for constructor normal forms

are executed in source code order. Finally, the original constructor body
is executed.

2. st1 = this(args): Recursive re-start of the initialisation phase with the
alternate constructor. Afterwards, the original constructor body is exe-
cuted.

If one of the above steps fails, the initialisation terminates abruptly throwing
an exception.

3.6.7 Handling Abrupt Termination

Abrupt Termination in JAVA CARD DL

In JAVA, the execution of a statement can terminate abruptly (besides termi-
nating normally and not terminating at all). Possible reasons for an abrupt
termination are (a) that an exception has been thrown, (b) that a loop or a
switch statement is terminated with break, (c) that a single loop iteration
is terminated with the continue statement, and (d) that the execution of a
method is terminated with the return statement. Abrupt termination of a
statement either leads to a redirection of the control flow after which the pro-
gram execution resumes (for example if an exception is caught), or the whole
program terminates abruptly (if an exception is not caught).

Evaluation of Arguments

If the argument of a throw or a return statement is a non-simple expres-
sion, the statement has to be unfolded first such that the argument can be
(symbolically) evaluated:

throwEvaluate
=⇒ 〈π Tnse v0 = nse; throw v0; ω〉φ

=⇒ 〈π throw nse; ω〉φ



3.6 Calculus Component 2: Reducing JAVA Programs 143

mods T <init >(params) {

// invoke constructor
// normal form of superclass
// (only if T 6= Object)super.<init >(args );

// add the initialiser
// statements:

initStatement1 ;

. . .
initStatement l ;

// append constructor body
sts; . . . stn;

// if T = Object then s = 1
// otherwise s = 2

}

(a) st1 = super(args)

in the original
constructor

mods T <init >(params) {

// constructor normal form
// instead of this(args)this.<init >(args );

// no initialiser statements
// if st1 is an explicit
// this() invocation

// append constructor body
st2 ; . . . stn ;

// starting with its second
// statement

}

(b) st1 = this(args)

in the original
constructor

Fig. 3.9. Building the constructor normal form

If the Whole Program Terminates Abruptly

In JAVA CARD DL, an abruptly terminating statement—where the abrupt ter-
mination does not just change the control flow but actually terminates the
whole program p in a modal operator 〈p〉 or [p]—has the same semantics as a
non-terminating statement (Def. 3.18). For that case rules such as the follow-
ing are provided in the JAVA CARD DL calculus for all abruptly terminating
statements:

throwDiamond

=⇒ false

=⇒ 〈throw se; ω〉φ

throwBox

=⇒ true

=⇒ [throw se; ω]φ

Note, that in these rules, there is no inactive prefix π in front of the throw

statement. Such a π could contain a try with accompanying catch clause
that would catch the thrown exception. However, the rules throwDiamond,
throwBox etc. must only be applied to uncaught exceptions. If there is a pre-
fix π, other rules described below must be applied first.

If the Control Flow is Redirected

The case where an abruptly terminating statement does not terminate the
whole program in a modal operator but only changes the control flow is more
difficult to handle and requires more rules. The basic idea for handling this



144 3 Dynamic Logic

case in our JAVA CARD DL calculus are rules that symbolically execute the
change in control flow by syntactically rearranging the affected program parts.

The calculus rules have to consider the different combinations of prefix-
context (beginning of a block, method-frame, or try) and abruptly termi-
nating statement (break, continue, return, or throw). Below, rules for all
combinations are discussed—with the following exceptions:

• The rule for the combination method frame/return is part of handling
method invocations (Step 6 in Sect. 3.6.5).

• Due to restrictions of the JAVA language specification, the combination
method frame/break does not occur.

• Since the continue statement can only occur within loops, all occurrences
of continue are handled by the loop rules (Sect. 3.7).

Moreover, switch statements, which may contain a break, are not considered
here; they are transformed into a sequence of if statements.

Rule for Method Frame and throw

In this case, the method is terminated, but no return value is assigned. The
throw statement remains unchanged (i.e., the exception is handed up to the
invoking code):

methodCallThrow
=⇒ 〈π throw se; ω〉φ

=⇒ 〈π method-frame(. . .) : {throw se; p } ω〉φ

Rules for try and throw

The rule in Figure 3.10 allows to handle try-catch-finally blocks and the
throw statement. The schema variable cs represents a (possibly empty) se-
quence of catch clauses. The rule covers three cases corresponding to the three
cases in the premiss:

1. The argument of the throw statement is the null pointer (which, of course,
in practice should not happen). In that case everything remains unchanged
except that a NullPointerException is thrown instead of null.

2. The first catch clause catches the exception. Then, after binding the ex-
ception to v , the code p from the catch clause is executed.

3. The first catch clause does not catch the exception. In that case the first
clause gets eliminated. The same rule can then be applied again to check
further clauses.

Note, that in all three cases the code p after the throw statement gets elimi-
nated.

When all catch clauses have been checked and the exception has still not
been caught, the following rule applies:



3.6 Calculus Component 2: Reducing JAVA Programs 145

tryCatchThrow

=⇒ 〈π if (se == null) {

try { throw NullPointerException (); }

catch (T v) { q } cs finally { r }

} else if (se instanceof T) {

try { T v; v = se; q } finally { r }

} else {

try { throw se; } cs finally { r }

}

ω〉φ

=⇒ 〈π try { throw se; p}

catch ( T v ) { q } cs finally { r }

ω〉φ

Fig. 3.10. The rule for try-catch-finally and throw

tryFinallyThrow
=⇒ 〈π Tse vse = se; r throw vse; ω〉φ

=⇒ 〈π try { throw se; p } finally { r }〉φ

This rule moves the code r from the finally block to the front. The try-block
gets eliminated so that the thrown exception now may be caught by other
try blocks in π (or remain uncaught). The value of se has to be saved in vse
before the code r is executed as r might change se.

There is also a rule for try blocks that have been symbolically executed
without throwing an exception and that are now empty and terminate nor-
mally (similar rules exist for empty blocks and empty method frames). Again,
cs represents a finite (possibly empty) sequence of catch clauses:

tryEmpty
=⇒ 〈π r ω〉φ

=⇒ 〈π try{ } cs { q } finally { r } ω〉φ

Rules for try/break and try/return

A return or a break statement within a try-catch-finally statement causes
the immediate execution of the finally block. Afterwards the try statement
terminates abnormally with the break resp. the return statement (a different
abruptly terminating statement that may occur in the finally block takes
precedence). This behaviour is simulated by the following two rules (here,
also, cs is a finite, possibly empty sequence of catch clauses):

tryBreak

=⇒ 〈π r break l; ω〉φ

=⇒ 〈π try{ break l; p } cs { q } finally{ r } ω〉φ

tryReturn

=⇒ 〈π Tvr
v0 = vr; r return v0; ω〉φ

=⇒ 〈π try{ return vr; p } cs { q } finally{ r } ω〉φ



146 3 Dynamic Logic

Rules for block/break, block/return, and block/throw

The following two rules apply to blocks being terminated by a break statement
that does not have a label resp. by a break statement with a label l identical
to one of the labels l1, . . . , lk of the block (k ≥ 1).

blockBreakNoLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .lk:{ break; p } ω〉φ

blockBreakLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .li:. . .lk:{ break li; p } ω〉φ

To blocks (labelled or unlabelled) that are abruptly terminated by a break

statement with a label l not matching any of the labels of the block, the
following rule applies:

blockBreakNomatch
=⇒ 〈π break l; ω〉φ

=⇒ 〈π l1:. . .lk:{ break l; p} ω〉φ

Similar rules exist for blocks that are terminated by a return or throw state-
ment:

blockReturn
=⇒ 〈π return v; ω〉φ

=⇒ 〈π l1:. . .lk:{ return v; p} ω〉φ

blockThrow
=⇒ 〈π throw v; ω〉φ

=⇒ 〈π l1:. . .lk:{ throw v; p} ω〉φ

3.7 Calculus Component 3: Invariant Rules for Loops

There are two techniques for handling loops in KeY: induction and using
an invariant rule. In the following we describe the use of invariant rules. A
separate chapter is dedicated to handling loops by induction (Chapter 11).

3.7.1 The Classical Invariant Rule

Before we discuss the problems that arise when setting up an invariant rule
for a complex language like JAVA CARD, we first recall the classical invariant
rule for a simple deterministic while-language with assignments, if-then-else,
and while-loops. In particular, we assume that there is no abrupt termination
and expressions do not have side-effects.

For such a simple while-language the invariant rule looks as follows:

invRuleClassical

Γ =⇒ UInv, ∆
Inv, se =⇒ [p]Inv
Inv, ! se =⇒ φ

Γ =⇒ U [while (se) { p }]φ, ∆
(∗)



3.7 Calculus Component 3: Invariant Rules for Loops 147

This rule states that, if one can find a formula Inv such that the three premisses
hold requiring that

(a) Inv holds in the beginning,
(b) Inv is indeed an invariant, and
(c) the conclusion φ follows from Inv and the negated loop condition ! se,

then φ holds after executing the loop (provided it terminates). Remember
that the symbol (∗) in the rule schema means, that the context Γ,∆,U must
be empty unless its presence is stated explicitly (as in the first premiss), i.e.,
only instances of the schema itself are inference rules.

It is crucial to the soundness of Rule invRuleClassical that expressions are
free of side-effects and that there is no concept of abrupt termination like, for
example, in JAVA CARD. In the following we discuss the problems arising from
side-effects of expressions and abrupt termination concerning the invariant
rule.

3.7.2 Loop Invariants and Abrupt Termination in JAVA CARD DL

JAVA CARD DL does not distinguish non-termination and abrupt termination.
For example, the formulae

[while (true) ;]φ

and
[i = i / (j - j);]φ

are equivalent (both evaluate to true). However, the program (fragment) in
the first formula does not terminate while the program in the second formula
terminates abruptly with an ArithmeticException (due to division by zero).

Thus, setting up a sound invariant rule for JAVA CARD DL requires a
more fine-grained semantics concerning termination behaviour of programs.
There are (at least) the following two approaches to distinguish between non-
termination and abrupt termination.

Firstly, the logic JAVA CARD DL could be enriched with additional labelled
modalities [ ]R and 〈 〉R with R ⊆ {break, exception, continue, return} referring
to the reason R of a possible abrupt termination. The semantics of a formula
[p]Rφ is that, if the program p terminates abruptly with reason R, then the
formula φ has to hold in the final state, whereas 〈p〉Rφ expresses that p
terminates abruptly with reason R and in the final state φ holds.

The second possibility for distinguishing non-termination and abrupt ter-
mination is to perform a program transformation such that the resulting pro-
gram catches all top-level exceptions and thus always terminates normally.
Abrupt termination due to exceptions can, e.g., be handled by enclosing the
original program with a try-catch block. For example, the following (valid)
formula expresses that if the program from above terminates abruptly with
an exception then formula φ has to hold:



148 3 Dynamic Logic

[Throwable thrown = null;

try {

i = i / (j - j);

} catch (Exception e) {

thrown = e;

}

](thrown !
.
= null −> φ)

Using the additional modalities the same could be expressed more concisely
as

[i = i / (j - j);]exceptionφ .

Handling the other reasons for abrupt termination by program transfor-
mation is more involved and is not explained here. The advantage of using
dedicated modalities is that termination properties can be addressed on a syn-
tactic level (suited for reasoning with a calculus), whereas the program trans-
formation approach relies on the semantics of JAVA CARD to encode abrupt
termination and its reason. In order to describe the invariant rule for JAVA

CARD DL in the following (and also the improved rule in Section 3.7.4), we
pursue the approach of introducing additional modalities. Note however, that
the actual rule available in the KeY system is based on the program transfor-
mation approach. The reason for that is that introducing indexed modalities
would result in a multitude of rules to be added to the calculus.

Since the general rule covering all reasons for abrupt termination and side-
effects of the loop condition is very complex, we start with some simpler rules
dealing with special cases excluding certain difficulties (e.g., abrupt termina-
tion).

Normal Termination and Condition without Side-effects

Under the assumptions that (a) the loop does not terminate abruptly (i.e.,
terminates normally or does not terminate at all) and that (b) the loop condi-
tion does not have side-effects, the invariant rule essentially corresponds to the
classical rule (the only difference are the prefix π and the postfix ω, which are
not present in the classical rule. As a reminder: π consists of opening braces,
labels, and try-statement but no executable statements and ω contains the
rest of the program (including closing braces and catch-blocks).

invRuleSimple

Γ =⇒ UInv, ∆
Inv & se =⇒ [p]Inv
Inv & ! se =⇒ [π ω]φ

Γ =⇒ U [π while (se) { p } ω]φ, ∆
(∗)

Abrupt Termination and Condition without Side-effects

When a continue statement without label or with a label referring to the
currently investigated loop is encountered in the loop body, the execution of



3.7 Calculus Component 3: Invariant Rules for Loops 149

the body is stopped and the loop condition is evaluated again, i.e., the loop
moves on to the next iteration. Thus, the invariant Inv has to hold both when
the body terminates normally and when a continue statement occurs (second
premiss of rule invRuleAt).

If during the execution of the loop body

• a continue statement with a label referring to an enclosing loop,
• an exception is thrown that is not caught within the body,
• a break statement occurs without label or with a label that refers to a

position in front of the loop, or
• a return statement occurs

then the whole loop statement terminates abruptly. In the rule, the reasons
leading to abrupt termination of the whole loop statement are contained in
the set AT = {break, exception, return}. Note that a continue with a label
referring to an enclosing loop can be simulated by a corresponding break

statement and, thus, we also use the label break to identify this case. In con-
trast, we use the label continue if the control flow is to be transferred to the
beginning of the loop containing the continue statement.

The consequence of abrupt termination of a loop statement is that the
execution of the loop is stopped immediately and the control flow is changed
according to the reason for the abrupt termination. Thus, since the whole
loop statement terminates, it is then not necessary to show that the invariant
holds. Rather it must be shown that the postcondition φ holds after the rest
of the program following the while loop has been executed (provided it ter-
minates). This is expressed by the third premiss of rule invRuleAt, where the
formula 〈p〉AT true holds iff p terminates abruptly (se is a simple expression
and its evaluation to terminate normally). If no abrupt termination occurs in
the loop body, rule invRuleAt reduces to rule invRuleSimple).

invRuleAt

Γ =⇒ UInv, ∆
Inv & se =⇒ [p]Inv & [p]continueInv
Inv & se =⇒ 〈p〉AT true −> [π p ω]φ
Inv & ! se =⇒ [π ω]φ

Γ =⇒ U [π while ( se ) { p } ω]φ, ∆
(∗)

Normal Termination and Condition with Side-effects

Now we assume that the loop body terminates normally but the loop condition
may have side-effects (including abrupt termination which leads to abrupt
termination of the loop statement). A loop condition nse that may have side-
effects is not a logical term and therefore has to be evaluated first. The result is
then assigned to a new variable v of type boolean. The only reason for abrupt
termination of a while statement during evaluation of the loop condition can
be an exception. Thus, AT = {exception}.



150 3 Dynamic Logic

The first premiss is identical to the one in the previous rules. The second
and third premiss correspond to premisses two and three of rule invRuleSimple,
but take possible side-effects (except for abrupt termination) of evaluating the
loop condition e into account.

Abrupt termination of the loop condition caused by an exception is han-
dled in premiss four, where the postcondition φ has to be established since
the whole loop statement terminates abruptly. If the evaluation of the loop
condition does not throw an exception this premiss trivially holds since then
〈v=e;〉AT true evaluates to false.

In case that the evaluation of nse does not terminate at all, all premisses
except for the first one are trivially valid. Note that this would not be true if
modality [·]AT had been used in the fourth premiss instead of 〈·〉AT .

invRuleNse

Γ =⇒ UInv, ∆
Inv =⇒ [boolean v=nse;](v

.
= TRUE −> [p]Inv)

Inv =⇒ [boolean v=nse;](v
.
= FALSE −> [π ω]φ)

Inv, 〈boolean v=nse;〉AT true =⇒ [π boolean v=nse; ω]φ

Γ =⇒ U [π while (nse) { p } ω]φ, ∆
(∗)

Abrupt Termination and Condition with Side-effects

The following most general rule covers all possible cases of side-effects and
abrupt termination.

Again, the sets AT = {break, exception, return} and AT ′ = {exception}
contain the reasons leading to abrupt termination of the whole loop state-
ment.

invRule

Γ =⇒ UInv, ∆
Inv =⇒ [boolean v=nse;](v

.
= TRUE −> ([p]Inv & [p]continueInv))

Inv, 〈boolean v=nse;〉AT′ true =⇒ [π boolean v=nse; ω]φ
Inv, 〈boolean v=nse;〉(v

.
= TRUE & 〈p〉AT true) =⇒

[π boolean v=nse;p ω]φ
Inv =⇒ [boolean v=nse;](v

.
= FALSE −> [π ω]φ)

Γ =⇒ U [π while (nse) { p } ω]φ, ∆
(∗)

The first premiss is identical to the one in previous rules and states that the
invariant has to hold in the beginning.

The second premiss covers the case that executing the loop body once
preserves the invariant both if the execution terminates normally and if a
continue statement occurred. Note that it is important that the execution of
p is started in a state reflecting the side-effects of evaluating the loop condition
nse. Therefore, writing

Inv, [boolean v=nse;](v
.
= TRUE) =⇒ [p]Inv & [p]continueInv



3.7 Calculus Component 3: Invariant Rules for Loops 151

instead would not be correct.
Premiss three (which is the same as premiss four of rule invRuleNse) states

that if the invariant holds and the evaluation of the loop condition nse termi-
nates abruptly (the only reason can be an exception), then the postcondition φ
has to hold after the rest ω of the program has been executed. Since the whole
loop terminates abruptly if the loop condition terminates abruptly, the loop
is omitted in the formula on the right side of the sequent.

Also in the fourth premiss, the postcondition φ has to be established if the
invariant Inv holds and the evaluation of the loop condition nse terminates
normally but the execution of p terminates abruptly due to one of the reasons
in AT. Again, in the formula on the right side of the sequent the loop statement
is replaced by a statement evaluating the loop condition and the body of the
loop.

The last premiss applies to the case that the loop terminates because
the loop condition evaluates to false. Then, assuming the invariant Inv holds
before executing the rest ω of the program, the postcondition φ has to hold.

3.7.3 Implementation of Invariant Rules

The invariant rules, from invRuleSimple to invRule, are different from other
rules of the JAVA CARD DL calculus, since in some premisses the context
(denoted by Γ,∆ and the update U) is deleted, which is why rule schemata
with (∗) are used (⇒ Def. 3.49). If the context would not be deleted, the rules
would not be sound as the following example shows.

Example 3.58. Consider the following JAVA CARD program:

JAVAwhile ( i<10 ) {

i=i+1;

}

JAVA

The sequent

i
.
= 0 =⇒ [int i=0; while (i<10 ) { i=i+1; }]i

.
= 0

is obviously not valid. In our example program no abrupt termination can
occur and the loop condition has no side-effects. We thus can apply the rule
invRuleSimple. Let us see what happens, if we use the following (unsound)
variant where the context is not deleted from the second and the third premiss
(schema version without (∗)):

unsoundRule

=⇒ Inv
Inv & se =⇒ [p]Inv
Inv & ! se =⇒ [π ω]φ

=⇒ [π while (se) { p } ω]φ



152 3 Dynamic Logic

Instantiating that rule yields (with Γ = (i
.
= 0), ∆,U empty, and using the

formula true as invariant):

unsoundInstance

i
.
= 0 =⇒ true

i
.
= 0, true & i < 10 =⇒ [i=i+1;]true

i
.
= 0, true & !(i < 10) =⇒ []i

.
= 0

i
.
= 0 =⇒ [int i=0; while (i<10 ) { i=i+1; }]i

.
= 0

As one can easily see, the three premisses of this instance are valid but the
conclusion is not. The reason for this unsoundness is that the context describes
the initial state of the loop execution; however, for correctness, in the second
premiss the loop body would have to be executed in an arbitrary state (that is
described merely by the invariant) and in the third premiss the invariant and
the negated loop condition must entail the postcondition in the final state of
the loop execution.

If the invariant rule is to be implemented using the taclet language pre-
sented in Chapter 4, there is the problem that taclets do not allow to omit
context formulae since they act locally on the formula or term in focus. This
is a deliberate design decision and not a flaw of the taclet language, which in
most cases is very useful. However, in the case of the invariant rule, it requires
to use some additional mechanism. The implementation of the invariant rule
using taclets is based on the idea that a special kind of updates can be used to
achieve a similar effect as with omitting the context. These special updates are
called anonymising updates and their intuitive semantics is that they assign
arbitrary unknown values to all locations, thus “destroying” the information
contained in the context.

Definition 3.59 (Anonymising Update). Let a JAVA CARD DL signa-
ture (VSym,FSymr,FSymnr ,PSymr,PSymnr , α) for a type hierarchy, a nor-
malised JAVA CARD program P ∈ Π, and a sequent Γ =⇒ ∆ be given.

For every fi : A1, . . . , Ani
→ A ∈ FSymnr (0 ≤ i ≤ n) occurring in P or

in Γ ∪∆ let f ′
i : A1, . . . , Ani

→ A ∈ FSymr be a fresh (w.r.t. P and Γ ∪∆)
rigid function symbol (i.e., f ′

i does neither occur in P nor in Γ ∪∆). Then,
the update

u1 ||u2 || · · · ||un

with

ui = for xi
1; true; · · · for xi

ni
; true; fi(x

i
1, . . . , x

i
ni

) := f ′
i(x

i
1, . . . , x

i
ni

)

is called an anonymising update for the sequent Γ =⇒ ∆. In the following we
abbreviate an anonymising update with V.

In the KeY system, the syntax for anonymising updates is {∗ := ∗n}, where
n ∈ N.

Using anonymising updates we can set-up invariant rules for JAVA CARD DL
that can be implemented using the taclet language. Here, we only present the



3.7 Calculus Component 3: Invariant Rules for Loops 153

variant of the general rule invRule, covering abrupt termination and side-effects
of the loop condition (variants of the rules invRuleSimple and invRuleNse with
anonymising updates are obtained analogously).

invRuleAnonymisingUpdate

=⇒ Inv
VInv =⇒ V [boolean v=nse;](v

.
= TRUE −> ([p]Inv & [p]continueInv))

VInv, V〈boolean v=nse;〉AT′ true =⇒ V [π v=nse; ω]φ
VInv, V〈boolean v=nse;〉(v

.
= TRUE & 〈p〉AT true) =⇒ V [π v=nse;p ω]φ

VInv =⇒ V [boolean v=nse;](v
.
= FALSE −> [π ω]φ)

=⇒ [π while (nse) { p } ω]φ

As can be seen, the context remains unchanged in all premisses, but formulae
whose evaluation must not be affected by the context are prefixed with an
anonymising update V .

Note 3.60. Please note that the above rule looks differently in the KeY system
since in the implementation we follow the approach based on a program trans-
formation to deal with abrupt termination of the loop instead of introducing
additional modalities 〈·〉AT and [·]AT (see the discussion in Sect. 3.7.2).

3.7.4 An Improved Loop Invariant Rule

Performance and usability of program verification systems can be greatly en-
hanced if specifications of programs and program parts not only consist of
the usual pre-/postcondition pairs and invariants but also include additional
information, such as knowledge about which memory locations are changed
by executing a piece of code. More precisely, we associate with a (sequence of)
statement(s) p a set Modp of expressions, called the modifier set (for p), with
the understanding that Modp is part of the specification of p. Its semantics is
that those parts of a program state that are not referenced by an expression
in Modp are never changed by executing p [Beckert and Schmitt, 2003].

Usually, modifier sets are used for method specifications (⇒ Chap. 5, 8).
In this chapter we extend the idea of modifier sets to loops. Similar as with
method specifications, modifier sets for loops allow to

• separate the aspects of (a) which locations change and (b) how they
change,

• state the change information in a compact way,
• make the proof process more efficient.

To achieve the latter point, we define a new JAVA CARD DL proof rule for
while loops that makes use of the information contained in a modifier set for
the loop. The main idea is to throw away only those parts of the context
Γ,∆ and U (i.e., of the descriptions of the initial state) that may be changed
by the loop. Anything that remains unchanged is kept and can be used to



154 3 Dynamic Logic

establish the invariant (second premiss of rule invRuleAnonymisingUpdate) and
the postcondition (premisses 3–5 of rule invRuleAnonymisingUpdate). That is,
we do not use an anonymising update V as in rule invRuleAnonymisingUpdate

which assigns unknown values to all location but a more restricted update
that only assigns anonymous values to critical locations.

An important advantage of using modifier sets is that usually a loop only
changes few locations, and that only these locations need to be put in a mod-
ifier set. On the other hand, using the traditional rule, all locations that are
not changed and whose value is of relevance have to be included in the invari-
ant and, typically, the number of relevant locations that are not changed by a
loop is much bigger than the number of locations that are changed. Of course,
in general, not everything that remains unchanged is needed to establish the
postcondition in the third premiss. But when applying the invariant rule it
is often not obvious what information must be preserved, in particular if the
loop is followed by a non-trivial program. That can lead to repeated failed
attempts to construct the right invariant. Whereas, to figure out the locations
that are (possibly) changed by the loop, it is usually enough to look at the
small piece of code in the loop condition and the loop body.

As a motivating example, consider the following JAVA CARD program frag-
ment pmin that computes the minimum of an array a of integers:

JAVA (3.1)

m = a[0]; i = 1;while (i < a.length) {if (a[i] < m) then

m = a[i];

i++;

}

JAVA

A postcondition (in KeY syntax) for this program is

φmin = ∀x.(0 <= x & x < a.length −> m <= a[x]) &

∃x.(0 <= x & x < a.length & m
.
= a[x]) ,

stating that, after running pmin, the variable m indeed contains the minimum
of a. However, a specification that just consists of φmin is rather weak. The
problem is that φmin can also be established using, for example, a program
that sets m as well as all elements of a to 0, which of course is not the intended
behaviour. To exclude such programs, the specification must also state what
the program does modify (the variables i and m) and does not modify (the
array a and its elements). One way of doing this is to extend the postcondition
with an additional part

φinv = ∀x.(0 <= x & x < a.length −> a[x]
.
= a old[x])



3.7 Calculus Component 3: Invariant Rules for Loops 155

where a old is a new array variable (not allowed to occur in the program)
that is supposed to contain the “old” values of the array elements. To make
sure a old has the same elements as a, the formula φinv must also be used as
a precondition and, thus, be turned into an invariant. In JAVA CARD DL, this
specification of pmin is written as φinv −> [pmin](φmin & φinv).

In order to prove the correctness of the program pmin using the clas-
sical invariant rule invRule or the variant with anonymising updates (rule
invRuleAnonymisingUpdate), it is crucial to add the formula φinv also to the
loop invariant that is used. Otherwise, the loop invariant is not strong enough
to entail the postcondition φ (the third premiss of the loop rule does not
hold). The reason is that all premisses of the invariant rule except for the first
one omit the context formulae Γ,∆ and the sequence U of updates, i.e., all
information about the state reached before running the while loop is lost (one
can construct similar examples where the second premiss of the rule does not
hold). The only way to keep this information—as long as no modifier sets are
used—is to add it to the invariant. In general, loop invariants are “polluted”
with formulae stating what the loop does not do. All relevant properties of
the pre-state that need to be preserved have to be encoded into the invari-
ant, even if they are in no way affected by the loop. Thus, two aspects are
intermingled:

• Information about what intended effects the loop does have.
• Information about what non-intended effects the loop does not have.

This problem can be avoided by encoding the second aspect (i.e., the
change information) with a modifier set instead of adding it to the invariant.
Then the correctness of the program and the correctness of the modifier set
can be shown in independent proofs and, thus, the two aspects are separated
on verification level as well.

Modifier Sets

We shall now formally define the notion of modifier sets which has been moti-
vated above. Intuitively, a modifier set enumerates the set of locations that a
code piece p may change—it is thus part of the specification of p. The question
how correctness of a modifier set with respect to a program can be proved is
addressed in Sect. 8.3.3.

In general programs and in particular loops can—and in practice often
do—change a finite but unknown number of locations (though in our simple
motivating example pmin the number of changed locations is known to be
two). A loop may, for example, change all elements in a list whose length is
not known at proof time but only at run time. Therefore, to handle loops, we
define modifier sets that can describe location sets of unknown size. Of course,
such modifier sets can no longer be represented as simple enumerations of
ground terms. Rather, we use guard formulae to define the set of ground terms



156 3 Dynamic Logic

that may change (this is similar to the use of guard formulae in quantified
updates).

Definition 3.61 (Syntax of Modifier Sets). Let (VSym,FSymr,FSymnr ,
PSymr,PSymnr , α) be a signature for a type hierarchy.

A modifier set Mod is a set of pairs 〈φ, f(t1, . . . , tn)〉 with φ ∈ Formulae
and f(t1, . . . , tn) ∈ Terms with f ∈ FSymnr .

Given a sequent Γ =⇒ ∆, let F ⊆ FSymnr be the set of non-rigid function
symbols f ∈ FSymnr occurring in Γ ∪∆. Then, {∗} is the modifier set

⋃

f∈F

{〈true, f(x1, . . . , xn)〉}

(specifying that any location in Γ =⇒ ∆ may change).

The intuitive meaning of a modifier set is that some location (f, (d1, . . . , dn))
may be changed by a program p when started in a state S, if the modifier set
for p contains an element 〈φ, f(t1, . . . , tn)〉 and there is variable assignment β
such that the following conditions hold:

1. valS,β(ti) = di for 1 ≤ i ≤ n, i.e., β assigns the free logical variables oc-
curring in ti values such that ti coincides with di.

2. S, β |= φ, i.e., the guard formula φ holds for the variable assignment β.

For our example program pmin, an appropriate modifier set is

Modmin = {〈true, i〉, 〈true, m〉} .

It states in a very compact and simple way that pmin only changes i and m

and, in particular, does not change the array a.
A modifier set Mod is said to be correct for a program p if p (at most)

changes the value of locations mentioned in Mod.

Definition 3.62 (Semantics of Modifier Sets). Given a signature for a
type hierarchy, let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke structure,
and let β be a variable assignment.

A pair (S1, S2) = ((D, δ, I1), (D, δ, I2)) ∈ S × S of states satisfies a modi-
fier set Mod, denoted by

(S1, S2) |= Mod ,

iff, for

(a) all f : A1, . . . , An → A ∈ FSymnr ,
(b) all (d1, . . . , dn) ∈ DA1 × · · · × DAn

the following holds:

I1(f)(d1, . . . , dn) 6= I2(f)(d1, . . . , dn)



3.7 Calculus Component 3: Invariant Rules for Loops 157

implies that there is a pair 〈φ, f(t1, . . . , tn)〉 ∈ Mod and a variable assign-
ment β such that

di = valS1,β(ti) (1 ≤ i ≤ n)

and
S1, β |= φ .

The modifier set Mod is correct for a program p, if

(S1, S2) |= Mod

for all state pairs (S1, p, S2) ∈ ρ.

The definition states that, if after running a program p there is some
location (f, (d1, . . . , dn)) which is assigned a value different from its value in
the pre-state, then the modifier set must contain a corresponding entry, i.e.,
a pair 〈φ, f(t1, . . . , tn)〉 such that for some variable assignment β the formula
φ holds and the ti evaluate to di (1 ≤ i ≤ n). Note that φ and the ti are
evaluated in the pre-state.

Example 3.63. Consider the following JAVA CARD method, which has one pa-
rameter of type int[].

JAVApubli
 multiplyByTwo(int[] a) {int i = 0;int j = 0;while (i < a.length) {

a[i] = a[i] * 2;

i++;

}

}

JAVA

Since a is a parameter of the method, the value of a.length is unknown.
Thus, for giving a correct modifier set, it is not possible to enumerate the
locations a[0], a[1], . . . , a[a.length-1].

However, a correct modifier set for the above program can be written as

{〈0 <= x & x < a.length, a[x]〉, 〈true, i〉} .

Another correct modifier set illustrating that modifier sets are not necessarily
minimal is

{〈0 <= x & x < a.length, a[x]〉, 〈true, i〉, 〈true, j〉} .

In general, a correct modifier set describes a superset of the locations that
actually change.

The modifier set {〈0 <= x & x < a.length, a[x]〉} is not correct for the
above program, since i is changed by the program but not contained in the
modifier set.



158 3 Dynamic Logic

Based on a modifier set Mod, we define the notion of an anonymising
update with respect to Mod, which is an update that (only) assigns unknown
values to those locations that are contained in the modifier set Mod.

Definition 3.64 (Anonymising Update w.r.t. a Modifier Set). Let a
signature (VSym,FSymr,FSymnr ,PSymr,PSymnr , α) for a type hierarchy, a
modifier set Mod, and a sequent Γ =⇒ ∆ be given. For every 〈φi, fi(t

i
1, . . . , t

i
ni

)〉
∈ Mod with fi : A1, . . . , Ani

→ A, let f ′
i ∈ FSymr be a fresh (w.r.t. Γ∪∆) rigid

function symbol with the same type as fi, i.e., f ′
i does not occur in Γ ∪∆.

Then the update V(Mod) =

{

V if Mod = {∗}

u1 || · · · ||uk if Mod = {〈φ1, f1(t
1
1, . . . , t

1
n1

)〉, . . . , 〈φk, fk(tk1 , . . . , t
k
nk

)〉}

with

V being an anonymising update for the sequent Γ =⇒ ∆ (Def. 3.59) and
ui = for xi

1; true; · · · for xli ; φi; fi(t
i
1, . . . , t

i
ni

) := f ′
i(t

i
1, . . . , t

i
ni

)

where
{xi

1, . . . , x
i
li} = fv(φi) ∪ fv(ti1) ∪ · · · ∪ fv(tini

)

is called an anonymising update with respect to Mod.

Properties of Anonymising Updates w.r.t. inReachableState

An anonymising update V(Mod) assigns terms an unknown but fixed value.
As a consequence, the state it describes is not necessarily reachable by a
JAVA CARD program. The idea of an anonymising update however is that it
approximates all possible state changes of some program and, thus, we require
that anonymising updates preserve inReachableState (⇒ Sect. 3.3.5), i.e., the
formula

inReachableState −> {V(Mod)} inReachableState

is logically valid for any V(Mod).

Improved Invariant Rule for JAVA CARD DL

We now present an invariant rule that makes use of the information contained
in a correct modifier set (if available). This rule is an improvement over rule
invRuleAnonymisingUpdate since it keeps as much of the context as possible,
i.e., only locations described by the modifier set are assigned unknown values
[Beckert et al., 2005b]. In contrast, rule invRuleAnonymisingUpdate assigns
unknown values to all locations, no matter whether they can be modified by
the loop or not.



3.7 Calculus Component 3: Invariant Rules for Loops 159

The rule loopInvariantRule is identical to rule invRuleAnonymisingUpdate

except that instead of the anonymising update V , the update V(Mod) is used
that is anonymising with respect to a modifier set Mod being correct for the
set

{ ;

if (nse) { p }

if (nse) { p } if (nse) { p }

if (nse) { p } if (nse) { p } if (nse) { p }
...

}

of programs. That is, the required modifier must be correct not only for the
loop body p and the loop condition nse but also for an arbitrary number of
iterations which, in classical dynamic logic, is denoted by (if (nse) { p })∗

using the iteration operator ∗.

loopInvariantRule

=⇒ Inv
U ′Inv =⇒ U ′[boolean v=nse;](v

.
= TRUE −> ([p]Inv & [p]continueInv))

U ′Inv, U ′〈boolean v=nse;〉AT′ true =⇒ U ′[π v=nse; ω]φ
U ′Inv, U ′〈boolean v=nse;〉(v

.
= TRUE & 〈p〉AT true) =⇒

U ′[π v=nse;p ω]φ
U ′Inv =⇒ U ′[boolean v=nse;](v

.
= FALSE −> [π ω]φ)

=⇒ [π while (nse) { p } ω]φ

where U ′ = V(Mod) and Mod is a correct modifier set for (if (nse) { p })∗.

Example 3.65. The following example shows that a “normal” modifier set that
is correct for the loop condition and loop body is not sufficient for the rule to
be sound.

Consider the program

JAVAwhile ( i<10 ) {if ( i>0 ) {

a = 5;

}

i=i+1;

}

JAVA

which we abbreviate with p in the following. A correct modifier set for the
loop body and loop condition would be Mod = {〈true, i〉, 〈i > 0, a〉} since
i is modified in any case and a is modified if i is greater than zero. The
anonymising update with respect to Mod is in this case



160 3 Dynamic Logic

V(Mod) = for y1; true; i := c || for y2; i > 0; a := d .

Setting U ′ = V(Mod) we try to prove the (invalid) formula

{i := 0 || a := 0} [π p ω]a
.
= 0 .

Applying the loopInvariantRule with Inv = (a
.
= 0) yields as a fifth premiss

(after some simplification)

{a := 0 || i := c} a
.
= 0 =⇒

{a := 0 || i := c} [v=i<10;](v
.
= FALSE −> [π ω]a

.
= 0)

which is a valid sequent. We do not show the other four premisses here which
are also valid, i.e., the rule is not sound with U ′ = V(Mod).

The reason for the unsoundness here is that Mod is a correct modifier set
for the loop body and loop condition if executed only once. However, in a
loop the body can be executed several times. In our example the modifier set
Mod = {〈true, i〉, 〈i > 0, a〉} is correct for the program

if (i>0) { a=5; } i=i+1;

but not for

if (i>0) { a=5; } i=i+1; if (i>0) { a=5; } i=i+1; .

That is, the anonymising update V(Mod) only anonymises the locations
that are modified in the first iteration of the loop. For the rule to be sound
we however need an anonymising update that affects all locations that are
changed by any execution of the body.

Usually, a modifier set describes the changes that a given, fixed (part of a)
program can perform. In contrast, the modifier set that is required for the
rule loopInvariantRule must describe the changes of an aribtrary number of
iterations of a given program. This has two serious drawbacks: Firstly, it is
unintuitive for the user since he is used to give modifier sets for one given
program and, secondly, the proof obligation for the correctness of modifier
sets (⇒ Sect. 8.3.3) cannot be used offhand for an unknown number if itera-
tions of a program. In the following section we therefore present a method how
a (correct) modifier set for the iteration p∗ of a program p can be generated
automatically from a (correct) modifier set for p.

Generating Modifier Sets for Iterated Programs

The following theorem states how a correct modifier set Mod∗p for p∗ can be
obtained if a correct modifier set for p is given.



3.7 Calculus Component 3: Invariant Rules for Loops 161

Theorem 3.66. Let

Modp = {〈φ1, f1(s
1
1, . . . , s

1
n1

)〉, . . . , 〈φm, fm(sm
1 , . . . , s

m
nm

)〉}

be a correct modifier for the program p such that the φi (1 ≤ i ≤ m) are first-
order formulae. Then the modifier set Mod∗p that is the least set satisfying the
conditions

• Modp ⊆ Mod∗
p.

• If 〈ψ, g(t1, . . . , tn)〉 ∈ Modp, then 〈ψ′, g(t′1, . . . , t
′
n)〉 ∈ Mod∗

p if there is a

substitution σ = [x1/l1(r
1
1 , . . . , r

1
o1

), . . . , xk/lk(rk
1 , . . . , r

k
ok

)] such that
– the variables xi are fresh and of the same type as li(r

i
1, . . . , r

i
oi

),
– for each li(r

i
1, . . . , r

i
oi

) there is some 〈φ, f(s1, . . . , sk)〉 ∈ Modp such
that f = l and k = oi, and

– σ(ψ′) = ψ and σ(g(t′1, . . . , t
′
n)) = g(t1, . . . , tn).

is correct for the iteration p∗ of p.

Note that the modifier set Mod∗p is not necessary minimal, even if Modp is
minimal for p.

In the KeY system we make use of the above theorem, i.e., when applying
the rule loopInvariantRule the user is asked to provide a modifier set that is
correct for the loop body p and loop condition nse. The system then auto-
matically generates a modifier set for the iterated loop body.

Example 3.67. We revisit Example 3.65 and apply Theorem 3.66 in order to
obtain a correct modifier set for the iterated loop body.

For the loop in Example 3.65 a correct modifier set for the loop body and
the loop condition is

Mod = {〈true, i〉, 〈i > 0, a〉} .

Then, following Theorem 3.66, a correct modifier set for the iterated loop
body is

Mod∗ = {〈true, i〉, 〈i > 0, a〉, 〈x > 0, a〉}

with the corresponding substitution σ = [x/i].
For another example consider the program

JAVAwhile ( i<10 ) {

ar[i]=0;

i=i+1;

}

JAVA



162 3 Dynamic Logic

A correct modifier set for the loop body and loop condition is

Mod = {〈true, i〉, 〈true, ar[i]〉}

and, following Theorem 3.66, a correct modifier set for the iterated loop body
is

Mod = {〈true, i〉, 〈true, ar[i]〉, 〈true, ar[x]〉}

with the corresponding substitution σ = [x/i].

3.8 Calculus Component 4: Using Method Contracts

There are basically two possibilities to deal with method calls in program ver-
ification: inlining the body of the invoked method (⇒ Sect. 3.6.5) or using the
specification (which then, of course, has to be verified). The latter approach
is discussed in this section.

Exploiting the specifications is indispensable in order for program verifica-
tion to scale up. This way, each method only needs to be verified (i.e., executed
symbolically) once. In contrast, inlined methods may have to be symbolically
executed multiple times, and the size of the proofs would grow more than lin-
early in the size of the program code to be executed symbolically. Moreover,
the source code of a (library) method may not be available. Then, the only
way to deal with the invocation of the method is to use its specification.

The specification of a method is called method contract and is defined as
follows.

Definition 3.68 (Method contract). A method contract for a method or
constructor op declared in a class or interface C ∈ P is a quadruple

(Pre,Post ,Mod, term)

where:

• Pre ∈ Formulae is the precondition that may contain the following pro-
gram variables:

– self for the receiver object (the object which a caller invokes the method
on); if op refers to a static method or a constructor the receiver object
variable is not allowed;

– p1 . . . , pn for the parameters.
• Post ∈ Formulae is the postcondition of the form

(exc
.
= null −> φ) & (exc !

.
= null −> ψ)

where φ is the postcondition for the case that the method terminates nor-
mally and ψ specifies the case where the method terminates abruptly with
an exception. The formulae φ and ψ may contain the following program
variables:



3.8 Calculus Component 4: Using Method Contracts 163

– self for the receiver object; again the receiver object variable is not
allowed for static methods;

– p1, . . . , pn for the parameters;
– result for the returned value;

• Mod is a modifier set for the method op.
• The termination marker term is an element from the set {partial , total};

the marker is set to total if and only if the method contract requires the
method or constructor to terminate, otherwise term is set to partial .

The formulae Pre and Post are JAVA CARD DL formulae. However, in most
cases they do not contain modal operators. This is in particular true if they
are automatically generated translations of JML or OCL specifications.

In this section, we assume that the method contract to be considered is
correct, i.e., the method satisfies its contract. This is a prerequisite for the
method contract rule to be correct. The question how to establish correctness
of a method contract is addressed in Sect. 8.2.4.

The rule for using a contract for a method invocation in a diamond modal-
ity looks as follows:

methodContractTotal

=⇒ {self := setarget || p1 := se1 || · · · || pn := sen} Pre
{V(Mod)} exc

.
= null =⇒

{V(Mod) || self := setarget || p1 := se1 || · · · || pn := sen || lhs := result}
(Post −> 〈π ω〉φ)

{V(Mod)} exc !
.
= null =⇒

{V(Mod) || self := setarget || p1 := se1 || · · · || pn := sen}
(Post −> 〈π throw exc; ω〉φ)

=⇒ 〈π lhs=setarget.mname(se1, . . . , sen)@C; ω〉φ

where V(Mod) is an anonymising update w.r.t. the modifier set Mod of the
method contract.

The above rule is applicable to a method-body-statement

lhs=se.mname(t1, . . . , tn)@C;

if a contract (Pre,Post ,Mod, total) for the method mname(T1 , . . . ,Tn) de-
clared in class C is given. Note, that the rule cannot be applied if a contract
with the termination marker set to partial is given since then termination of
the method to be invoked is not guaranteed.

In the first premiss we have to show that the precondition Pre holds in the
state in which the method is invoked after updating the program variables
self and pi with the receiver object se and with the parameters sei . This
guarantees that the method contract’s precondition is fulfilled and we can use
the postcondition Post to describe the effect of the method invocation, where
two cases must be distinguished.

In the first case (second premiss) we assume that the invoked method
terminates normally, i.e., the program variable exc is null. If the method



164 3 Dynamic Logic

is non-void the return value return is assigned to the variable lhs . The sec-
ond case deals with the situation that the method terminates abruptly (third
premiss). Note, that in both cases the postcondition Post holds and the lo-
cations that the method possibly modifies are updated with the anonymising
update V(Mod) with respect to Mod. As in the first premiss, the variables for
the receiver object and the parameters are updated with the corresponding
terms. In case of abrupt termination there is no result but an exception exc
that must be thrown explicitly in the fourth premiss to make sure that the
control flow of the program is correctly reflected.

The rule for the method invocations in the box modality is similar. It can
be applied independently of the value of the termination marker.

methodContractPartial

=⇒ {self := se || p1 := se1 || · · · || pn := sen} Pre
exc

.
= null =⇒

{V(Mod) || self := se || p1 := se1 || · · · || pn := sen || lhs := result}
(Post −> [π ω]φ)

exc !
.
= null =⇒

{V(Mod) || self := se || p1 := se1 || · · · || pn := tn}
(Post −> [π throw exc; ω]φ)

=⇒ [π lhs=se.mname(se1, . . . , sen)@C; ω]φ

where V(Mod) is an anonymising update w.r.t. the modifier set Mod of the
method contract.

Example 3.69. The following JAVA CARD class MCDemo contains the two meth-
ods inc and init that are annotated with JML specifications. The contract
of inc states that:

• The method terminates normally.
• The result is equal to the sum of the parameter x and the literal 1.
• The method is pure, i.e., does not modify any location.

The contract of init expresses that:

• The method terminates normally.
• When the method terminates, the result is equal to the sum of the pa-

rameter u and the literal 1 and the attribute attr has the value 100

JAVApubli
 
lass MCDemo {int attr;

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result == x+1;



3.8 Calculus Component 4: Using Method Contracts 165

@ */publi
 int inc(int x) {return ++x;

}

/*@ public normal_behavior

@ ensures \result == u+1 && attr == 100;

@ */publi
 int init(int u) {

attr = 100;return inc(u);

}

}

JAVA

In this example, we want to prove the (total) correctness of the method init.
We feed this annotated JAVA CARD class into the JML front-end of the KeY
system and select the corresponding proof obligation for total correctness.
When we arrive at the point in the proof where method inc is invoked we apply
the rule methodContractTotal. This is possible even if we have not explicitly
set-up a method contract according to Def. 3.68. Rather the KeY system
automatically translates the JML specification of method inc into the method
contract (Pre,Post ,Mod, term) with

Pre = true

Post = result
.
= p1 + 1

Mod = {}

term = total

Since we have specified that the method inc terminates normally, the KeY
system generates only the following (slightly simplified) two premisses instead
of the three in the rule scheme (the one dealing with abrupt termination is
omitted):

1. In the first sequent we have to establish the precondition of method inc

in the state where inc is invoked. This is trivial here since the JML spec-
ification does not contain a requires clause and, thus, the precondition
is true.

KeY

==>

{u_old:=u_lv,

self:=self_lv,



166 3 Dynamic Logic

x:=u_lv,

self_lv.attr:=100} true
KeY

2. In the second sequent we make use of the postcondition of method inc. In
lines 4 and 5 the variables for the receiver object self and the parameter x,
respectively, are updated with the corresponding parameter terms. In the
JML specification we have an assignable nothing; statement saying
that the method inc does not modify any location. As a consequence, the
anonymising update V(Mod) in the rule scheme here is empty and, thus,
omitted.

KeY

==>

{u_old:=u_lv,

3 self_lv.attr:=100

self:=self_lv,

x:=u_lv}

6 ( j = x + 1

-> \<{method-frame(result->result,
source=MCDemo,

9 this=self): {return j;

}

12 }\> (result = u_old + 1 & self.attr = 100))

KeY

The validity of the two sequents shown above can be established automatically
by the KeY prover.

Note that the program would also be correct if we omit from the specifica-
tion assignable nothing;. Then, however, we could not prove the correct-
ness of the program using the rule methodContractTotal since for the rule being
sound it must be assumed that anything, i.e., in particular the attribute attr,
can be changed by the corresponding method. As a consequence, the validity
of the equation attr = 100 in the formula following the diamond modality
in the above sequent cannot be established. If instead of the method con-
tract rule the rule for inlining the method body is used, the correctness of
the program can be shown even if the assignable clause is missing since the
implementation of method inc in fact does not modify the attribute attr.

3.9 Calculus Component 5: Update Simplification

The process of update simplification comprises (a) update normalisation and
(b) update application. Update normalisation transforms single updates into



3.9 Calculus Component 5: Update Simplification 167

a certain normal form, while update application involves an update and a
term, a formula, or another update that it is applied to. Note that in the KeY
system both normalisation and application of updates is done automatically;
there are no interactive rules for that purpose.

3.9.1 General Simplification Laws

We first define an equivalence relation on the set of JAVA CARD DL updates,
which holds if and only if two updates always have the same effect, i.e., rep-
resent the same state transition.

Definition 3.70. Let u1, u2 be JAVA CARD DL updates. The relation

≡ ⊆ Updates × Updates

is defined by
u1 ≡ u2 iff valS,β(u1) = valS,β(u2)

for all variable assignments β and JAVA CARD DL states S.

The first update simplification law expressed in the following lemma is that
the sequential and parallel update operators are associative.

Lemma 3.71. For all u1, u2, u3 ∈ Updates the following holds:

• u1 || (u2 ||u3) ≡ (u1 ||u2) ||u3,
• u1 ; (u2 ;u3) ≡ (u1 ;u2) ;u3.

This justifies that in the sequel we omit parentheses when writing lists of
sequential or parallel updates. However, neither of the operators || and ; is
commutative, as the following example demonstrates.

Example 3.72. The sequential and parallel update operators are not commu-
tative:

i := 0 ; i := 1 ≡ i := 1 6≡ i := 0 ≡ i := 1 ; i := 0

i := 0 || i := 1 ≡ i := 1 6≡ i := 0 ≡ i := 1 || i := 0

Another simple law is that quantification in an update has no effect if the
quantified variable does not occur in the scope.

Lemma 3.73. Let x be a variable, φ a JAVA CARD DL formula, and u an
update. If φ is logically valid and x 6∈ fv(φ) ∪ fv(u) then

(for x; φ; u) ≡ u .



168 3 Dynamic Logic

3.9.2 Update Normalisation

In the following we present a normal form for updates and explain how ar-
bitrary updates are transformed into this normal form. We use “for x̄; φ; u”
and “for (x1, . . . , xn); φ; u” to abbreviate “for x1; true; · · · for xn; φ; u”.

The normal form for updates is a sequence of quantified updates (with
function updates as sub-updates) executed in parallel.

Definition 3.74 (Update Normal Form). An update u is in update nor-
mal form if it has the form

for x̄1; φ1; u1 || for x̄2; φ2; u2 || · · · || for x̄n; φn; un

where the ui are function updates (⇒ Def. 3.8).

It is crucial for this normal form that the well-ordering of the domain
(of a JAVA CARD DL Kripke structure with ordered domain) is expressible
in the object logic. For that purpose JAVA CARD DL contains the binary
predicate quanUpdateLeq . It is used for resolving clashes in quantified up-
dates on a syntactic level. This requires to express that there is an ele-
ment x satisfying some property φ and that it is the smallest such element:
∃x.(φ & ∀y.([y/x]φ −> quanUpdateLeq(x, y))).

We now present simplification laws that allow arbitrary updates to be
turned into normal form.

Function Updates

A function update f(t1, . . . , tn) := s can easily be transformed into normal
form by applying Lemma 3.73:

f(t1, . . . , tn) := s ≡ for x; true; f(t1, . . . , tn) := s

where x 6∈ fv(f(t1, . . . , tn) := s).

Sequential Update

Sequential updates u1 ;u2 can be transformed into normal form by ap-
plying the following law which introduces an update application {u1} u2

(⇒ Sect. 3.9.3).

Lemma 3.75. For all u1, u2 ∈ Updates:

u1 ;u2 ≡ u1 || {u1}u2



3.9 Calculus Component 5: Update Simplification 169

Quantified Updates with Non-function Sub-updates

We consider a quantified update for x; φ; u where u is not a function update
(otherwise the update would already be in normal form).

If u is a sequential update, we apply the previous rule to transform u into a
parallel update. The handling of parallel updates however is not that straight-
forward. For u = u1 ||u2, the quantification cannot be simply distributed over
the parallel update operator as the following example shows.

Example 3.76. For simplicity, we assume that x ranges only over the non-
negative integers (which shall be ordered as usual). Then,

for x; 0 <= x <= 2; (f(x+ 1) := x || f(x) := x)

≡ f(3) := 2 || f(2) := 2 || f(2) := 1 || f(1) := 1 || f(1) := 0 || f(0) := 0

≡ f(3) := 2 || f(2) := 1 || f(1) := 0 || f(0) := 0

6≡ f(3) := 2 || f(2) := 2 || f(1) := 1 || f(0) := 0

≡ f(3) := 2 || f(2) := 1 || f(1) := 0 || f(2) := 2 || f(1) := 1 || f(0) := 0

≡ (for x; 0 <= x <= 2; f(x+ 1) := x) ||

(for x; 0 <= x <= 2; f(x) := x)

As the above example suggests, a quantified update for x; φ; u can be
understood as a (possibly infinite) sequence . . . || [x/t2]u || [x/t1]u where in-
stances of the sub-update u are put in parallel for all values satisfying the
guard (syntactically represented by terms ti). To preserve the clash seman-
tics of quantified updates, the order of the updates [x/ti]u put in parallel
is crucial. A term ti must evaluate to a domain element di that is smaller
than or equal to all the dj that the terms tj , j > i, evaluate to. Intuitively,
in the sequence . . . || [x/t2]u || [x/t1]u a term ti must be smaller than all the
terms ti+n occurring to its left to correctly represent the corresponding quan-
tified update, since this guarantees that in case of a clash “the least element
wins”.

Distributing a quantification over the parallel-composition operator corre-
sponds to a permutation of the updates in the sequence . . . || [x/t2]u || [x/t1]u,
which in general alters the semantics (as the above example shows). Only in
the case that no clashes occur, permutations preserve the semantics of parallel
updates.

Example 3.77. We revisit the updates from Example 3.76 and visualise the
permutation of sub-updates induced by distributing quantification over the
parallel-composition operator. The arrows in Fig. 3.11 indicate the order of
the updates [x/ti]f(x + 1) := x and [x/ti]f(x) := x if the quantified updates
from Example 3.76 are understood as a sequence of parallel updates.

The left part of Fig. 3.11 shows the order for the update

for x; 0 ≤ x ≤ 2; (f(x+ 1) := x || f(x) := x)



170 3 Dynamic Logic

and the right part the order for

for x; 0 ≤ x ≤ 2; f(x+ 1) := x || for x; 0 ≤ x ≤ 2; f(x) := x ,

i.e., after distributing the quantification over the parallel sub-update. The
figure shows that the order of clashing parallel updates in the two cases differ.
For example, the update [x/1](f(x) := x) clashes with [x/0](f(x + 1) := x).
In the left part of the figure, the latter update wins, while in the right part,
the former update takes precedence.

[x/2]f(x + 1) := x [x/2]f(x) := x

[x/1]f(x + 1) := x [x/1]f(x) := x

[x/0]f(x + 1) := x [x/0]f(x) := x

[x/2]f(x + 1) := x [x/2]f(x) := x

[x/1]f(x + 1) := x [x/1]f(x) := x

[x/0]f(x + 1) := x [x/0]f(x) := x

Fig. 3.11. Evaluation order of quantified updates

Fig. 3.11 does not only illustrate that naive distribution of quantification
over parallel composition is not a correct update simplification law, but also
gives a hint on how to “repair” the law based on the following two observations:

• If no clashes occur, the parallel update operator is commutative, i.e., in
that case the order in a sequence of parallel updates is irrelevant.

• In case of a clash, the update that gets overridden by a later update can
simply be omitted (since parallel updates do not influence each other).

The idea is now to distribute the quantification and to add a guard for-
mula ψ to the quantified update to prevent wrong overriding. The formula ψ
is constructed in such a way that it evaluates to false if the update would
wrongly override another update. For example, in Fig. 3.11 that situation oc-
curs if an update clashes with an other update that is located in a column to
its left and in a row below.

That way, an update of the form

for x; ϕ; (u1 ||u2)

can still be transformed into an update of the shape

for x; ϕ; u1 || for x; ϕ & ψ; u2

where u1 can be assumed to be in normal form

for ȳ1; ϕ1; v1 || for ȳ2; ϕ2; v2 || · · · || for ȳn; ϕn; vn

and u2 is an update of the form



3.9 Calculus Component 5: Update Simplification 171

for (z1, . . . , zo); ω; f(t1, . . . , tk) := s .

The formula ψ which adds additional constraints preventing the right up-
date from overriding the left one in a wrong way looks like

ψ = ∀x′.((C1 | · · · | Cn) −> quanUpdateLeq(x, x′))

where x′ is a fresh variable and Ci determines whether the i-th part

for (y1, . . . , yl); ϕi; g(r1, . . . , rm) := si

of u1 might collide with u2.
This is the case if and only if

• the left hand sides f(t1, . . . , tk) and g(r1, . . . , rm) of both updates syn-
tactically match (i.e. same top-level function symbols f = g and same
arities k = m) and

• there are values y1, . . . , yl such that the guard ϕi evaluates to true for a
value x′ < x (i.e. u2 illicitly overrides u1 “in a row below”) and for that
same value x′ the arguments tj and rj pairwise evaluate to the same value
(i.e. there is in fact a clash).

Thus, Ci is defined as

Ci =

{

∃y1. · · · ∃yl.C
′
i for f = g, k = m

false otherwise

C′
i = [x/x′]ϕi & t1

.
= [x/x′]r1 & · · · & tk

.
= [x/x′]rk

Example 3.78. We apply the transformation described above to Example 3.76.
Since we assume x to range only over non-negative integers with the usual
ordering, we can write y <= z instead of quanUpdateLeq (y, z).

In a first step we transform the sub-updates of the parallel update
f(x+ 1) := x || f(x) := x into normal form:

for x; 0 <= x <= 2; (f(x+ 1) := x || f(x) := x)

≡ for x; 0 <= x <= 2; (for y; true; f(x+ 1) := x ||
for z; true; f(x) := x)

Then, we distribute the quantification over the parallel update and add a
formula ψ to guarantee the correctness of the transformation.

≡ (for x; 0 <= x <= 2; for y; true; f(x+ 1) := x) ||
(for x; 0 <= x <= 2 & ψ; for z; true; f(x) := x)

where ψ = ∀x′.(x
.
= x′ + 1 −> x <= x′). The formula 0 <= x <= 2 & ψ can

be simplified to x
.
= 0, and we obtain



172 3 Dynamic Logic

≡ (for x; 0 <= x <= 2; for y; true; f(x+ 1) := x) ||
(for x; x

.
= 0; for z; true; f(x) := x)

≡ (for x; 0 <= x <= 2; f(x+ 1) := x) ||
(for x; x

.
= 0; f(x) := x)

≡ f(3) := 2 || f(2) := 1 || f(1) := 0 || f(0) := 0

The last equivalence shows that the transformed formula is in fact equivalent
to the original one (see Example 3.76).

Note 3.79. The normal form for updates consists of quantified updates put in
parallel. In KeY we also allow function updates to appear instead of quan-
tified updates, i.e., it is not necessary to transform a function update into a
quantified update. The reason is that the majority of updates are function
updates and the normal form becomes very clumsy and hard to read if these
updates are transformed into quantified updates (see, e.g., Example 3.76).

In the KeY system, the parallel sub-updates of an update in normal form
are ordered lexicographically. That makes it possible to close many proof goals
without additional rules for permuting the parallel sub-updates.

3.9.3 Update Application

The second part of the update simplification process is the application of
updates to other updates, terms, and formulae. Since updates are “semantical”
substitutions, the application of an update cannot (always) be effected by
a mere syntactical substitution but may require more complex syntactical
manipulations.

Applying an Update to an Update

The application of an update to another update is based on the following
simplification laws.

Lemma 3.80. Let an arbitrary update u ∈ Updates and function updates
u1, . . . , un ∈ Updates be given. Then,

• {u} (f(t1, . . . , tn) := s) ≡ f({u} t1, . . . , {u} tn) := {u} s
• if none of the variables in the variable lists x̄i occur in u

{u} (for x̄1; φ1; u1 || · · · || for x̄n; φn; un) ≡
for x̄1; {u} φ1; {u} u1 || · · · || for x̄n; {u} φn; {u} un

In the above lemma only applications of updates to function updates and to
updates in normal form are considered. That, however, is sufficient since all
updates can be transformed into normal form using the rules from Sect. 3.9.2.



3.9 Calculus Component 5: Update Simplification 173

Applying an Update to a Term

In the following, we use the notation t ≡ t′ and φ ≡ φ′ to denote that the
terms t, t′ resp. the formulae φ, φ′ have the same value in all states for all
variable assignments, in which case one can safely be replaced by the other
preserving the semantics of the term of formula.

Definition 3.81. Given terms t, t′ ∈ Terms and formulae φ, φ′ ∈ Formulae,
we write

• t ≡ t′ if the formula t
.
= t′ is logically valid,

• φ ≡ φ′ if the formula φ <−> φ′ is logically valid.

Lemma 3.82. Let

u = for ȳ1; φ1; t1 := s1 || · · · || for ȳm; φm; tm := sm

be an update in normal form. Then,

• for all rigid terms t ∈ Terms,

{u} t ≡ t ,

• for all terms f(a1, . . . , an) ∈ Terms,

{u} f(a1, . . . , an) ≡
if Cm then Tm else . . . if C1 then T1 else f({u} a1, . . . , {u} an)

where C1, . . . , Cm are guard formulae expressing that the i-th sub-update
of u affects the term f(a1, . . . , an), and T1, . . . , Tm are terms that describe
the value of the expression in these cases.
Ci and Ti are defined as follows. Suppose that the i-th part of u is of the
form

for (z1, . . . , zl); φi; g(b1, . . . , bk) := si .

Then, the formula Ci is defined by

Ci =

{

∃z1. · · · ∃zl. C
′
i if f = g and n = k

false otherwise

C′
i = φi & ({u} a1)

.
= b1 & · · · & ({u} ak)

.
= bk

and the terms Ti are constructed from the si by applying substitutions
that instantiate the occurring variables with the smallest of clashing values
(corresponding to the clash semantics of quantified updates):

[
z1 / (ifExMin z1.∃z2. · · · ∃zl. C

′
i then z1 else z1),

z2 / (ifExMin z2.∃z3. · · · ∃zl. C
′
i then z2 else z2),

. . . ,
zl / (ifExMin zl.C

′
i then zl else zl)

]
si



174 3 Dynamic Logic

• for all u1 ∈ Updates and t ∈ Terms,

{u} ({u1} t) ≡ {u ;u1} t .

The order of the Ci and Ti in the second equivalence in the above lemma
is relevant. Due to the last-win semantics of parallel updates, the right-most
sub-update for ȳi; φi; ti := si, i = m, must be checked first, and the left-most
sub-update, i = 1, must be checked last such that the i-th update “wins” over
the j-th update if i > j.

Example 3.83. As an example, we consider the term {a(o) := t} a(p). Intu-
itively, the update a(o) := t affects the term a(p) iff o and p evaluate to the
same domain element. In a first step, we transform the update into normal
form:

a(o) := t ≡ for y; true; a(o) := t

where y is a fresh variable. Now, we can apply the normalised update on the
term a(p) using Lemma 3.82:

{for y; true; a(o) := t} a(p) ≡

if C then T else a({for y; true; a(o) := t} p)

where

C = ∃y.C′

C′ = true & ({for y; true; a(o) := t} p)
.
= o

≡ ({for y; true; a(o) := t} p)
.
= o

T = [y / (ifExMin z.C′ then z else y)]t

= t (since y does not occur in t)

The simplification of ({for y; true; a(o) := t} p) yields p since it can be
excluded syntactically that this update can affect the non-rigid constant p.
Thus, we finally obtain

{for y; true; a(o) := t} a(p) ≡

if p
.
= o then t else a(p)

which coincides with our intuition.

Applying an Update to a Formula

The following lemma contains simplification laws for applications of updates
to formulae. Updates can be distributed over logical operators (except modal
operators) as (a) the semantics of logical operators is not affected by a state
change (b) the state change affected by an update is deterministic.



3.10 Related Work 175

Lemma 3.84. Let u ∈ Updates be an update:

• {u} p(t1, . . . , tn) ≡ p({u} t1, . . . , {u} tn),
• {u} true ≡ true and {u} false ≡ false,
• {u} (!φ) ≡ !{u} φ,
• {u} (φ ◦ ψ) ≡ {u} φ ◦ {u} ψ for ◦ ∈ {|,&,−>},
• {u} ∀x.φ ≡ ∀x.{u} φ and {u} ∃x.φ ≡ ∃x.{x} φ provided that
x 6∈ fv(u),

• {u} ({u1} φ) ≡ {u ;u1} φ.

The application of an update u to a formula with a modal operator, such as
{u} 〈p〉φ and {u} [p]φ, cannot be simplified any further. In such a situation,
instead of using update simplification, the program p must be handled first
by symbolic execution. Only when the whole program has disappeared, the
resulting updates can be applied to the formula φ.

3.10 Related Work

An object-oriented dynamic logic, called ODL, has been defined [Beckert and
Platzer, 2006], which captures the essence of JAVA CARD DL, consolidating its
foundational principles into a concise logic. The ODL programming language
is a While language extended with an object type system, object creation,
and non-rigid functions that can be used to represent object attributes. How-
ever, it does not include the many other language features, built-in operators,
etc. of JAVA. Using such a minimal extension that is not cluttered with too
many features makes theoretical investigations much easier. A case in point
are paper-and-pencil soundness and completeness proofs for the ODL calcu-
lus, which are—though not trivial—still readable, understandable and, hence,
accessible to investigation.

A version of dynamic logic is also used in the software verification systems
KIV [Balser et al., 2000] and VSE [Stephan et al., 2005] for (artificial) imper-
ative programming languages. More recently, the KIV system also supports
a fragment of the JAVA language [Stenzel, 2005]. In both systems, DL was
successfully applied to verify software systems of considerable size.

The LOOP tool [Jacobs and Poll, 2001, van den Berg and Jacobs, 2001]
translates JAVA programs and specifications written in the Java Modeling
Language (JML) into proof goals expressed in higher-order logic. LOOP serves
as a front-end to a theorem prover (PVS or Isabelle), in which the actual
verification of the program properties takes place, based on a semantics of
sequential JAVA that is formalised using coalgebras.

The Jive tool [Meyer and Poetzsch-Heffter, 2000] follows a similar ap-
proach, translating programs that are written in a core subset of Java together
with their specification into higher-order proof goals. These proof goals can
then be discharged using the interactive theorem prover Isabelle.


