
Supporting Confidentiality in UML:

A Profile for the Decentralized Label Model

Rogardt Heldal1, Steffen Schlager2, and Jakob Bende1

1 Chalmers University of Technology
SE-412 96 Göteborg, Sweden
heldal@cs.chalmers.se
2 University of Karlsruhe

Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany

schlager@ira.uka.de

Abstract We present a way of incorporating a decentralized label model
into the UML by defining a profile which is the built-in extension mech-
anism of the UML. Our profile permits specifying confidentiality of data
in UML by offering annotations for classes, attributes, operations, val-
ues of objects, and parameters of operations. The profile also supports
generation of Jif (Java information flow) code and the Jif compiler guar-
antees that the specified confidentiality constraints are not violated. Our
approach is appealing in the sense that it offers the possibility to con-
sider confidentiality in UML and that the obtained code is guaranteed
to behave correctly.

1 Introduction

Our philosophy is that it should be convenient to consider security issues dur-
ing the system development process, and that security should be automatically
verifiable at code level. Addressing both of these aspects is important in order
to build a secure software system.

The UML [25] has become the de facto standard for the development of
object-oriented software systems in industry. There are several reasons for this:
it is relatively easy to understand and to learn and it offers several views on a
system giving a good overview on its architecture. We aim to make it possible
to consider security issues1 during the industrial development process—so UML
is a suited starting point.

One of the main problems with UML is that the focus has been more on
functionality than on constraints such as security. In this paper we adapt the
UML by defining a profile offering security annotations for a seamless integration
of security aspects into a UML-based development process. But how can the

1 In this work we concentrate on confidentiality. “Security” has a lot of other aspects,
like e.g. authenticity, data integrity, non-repudiation, access control, or availability
which are not considered here.

required rigor for handling security be obtained? Here, language-based checkers
play an important role where security information is derived from a program
written in a high-level language during the compilation process and is included
in the compiled object. This extra security information can take several forms,
e.g. a formal proof or type annotations. There have been several overview papers
in this area, e.g. [17,27,26].

Our UML profile (addressing the specification of secure systems) is intended
to be used together with a language-based checker to validate that the code
really satisfies the security constraints. We decided to use the Java information
flow (Jif) system [21,22]. Jif handles a large subset of the object-oriented2 lan-
guage Java [11] but also contains some additional language constructs, e.g. to
control the propagation of confidential data. The Jif type checker guarantees
that confidential data can only leak in a controlled manner. What kind of data
is allowed to leak should already be part of the specification3. A prerequisite for
that is, of course, that the specification language supports such constraints. It is
important to notice that UML diagrams cannot be validated on the same level
as code. The code is needed to consider for example indirect information flow [8]
and covert channels [18].

In standard security models, like the Bell-LaPadual model [2] and the Biba
model [4], the security policy is separated from the code. In this respect Jif differs
since the policy is incorporated into the code in form of labels, implementing
a decentralized label model [23,21]. Data is annotated with labels that specify
the ownership and read permissions. The Jif type checker guarantees that the
confidentiality policies declared in the labels are not violated.

The decentralized label model gives fine-grained control of data based on
decentralized labels. So, it can be guaranteed that a program working with con-
fidential data propagates information only in a controlled manner. Other ap-
proaches, like e.g. access control [3], give you all or nothing: they help to prevent
information release but do not control information propagation, i.e. do not con-
trol how a program distributes confidential data that it is allowed to read. Also
not suited for many applications is the sandbox model which e.g. is used for the
execution of Java applets that can be downloaded from the internet. It prevents
access to data outside the sandbox which is often too restrictive.

Java is not adequate for developing programs which require tight control of
confidentiality. That is why we use Jif instead. Similarly, UML is not suited for
specifying such programs. That is why we have previously created an extended
version of UML called UMLS [12] (UML for Security). UMLS is also based on
the decentralized label model. The purpose of that work was to demonstrate
that the combination of model-based and language-based security is compelling.
However, we did not extend UML in the standard way by defining a profile. This
has serious drawbacks: UMLS is not UML-compliant, general UML tools cannot

2 Object-orientation is important because the UML is tailored to the development of
object-oriented systems.

3 In fact, this information should already be identified during the analysis phase since
the customer usually knows exactly which information has to be kept confidential.

be used and the interchangeability of models is harmed. The aim of this paper is
to offer support for confidentiality in UML by casting UMLS in a UML profile.

In order to obtain an implementation from the model that satisfies the se-
curity constraints, Jif code skeletons can be generated automatically. A type
checker then can automatically verify that the (manually) added implementa-
tion does not violate the specified confidentiality constraints. In this paper, we
concentrate on class diagrams but the profile can be extended to the other di-
agram types considered in UMLS (interaction diagrams, use cases, and activity
diagrams).

Structure of the paper. In Sect. 2 we shortly present the decentralized label
model. The built-in extension mechanism of UML is introduced in Sect. 3. Our
security profile UMLsProfile is defined in Sect. 4 where we also show some ex-
amples and discuss the profile. In Sect. 5 we mention related research before we
draw conclusions and point out future work in Sect. 6.

Due to space restrictions we do not give an introduction to Jif. Rather, we
introduce Jif bit by bit when needed. For more information on Jif, the reader is
referred to [21,22].

2 Decentralized Label Model

The decentralized label model [23] is a security model that improves existing
models by allowing users to declassify information in a decentralized way and
by supporting fine-grained data sharing. Its main elements and ideas—labels,
constraints, and declassification—are shortly explained in the following.

2.1 Labels

The central element of the decentralized label model is the label. Labels are used
to annotate data in order to guarantee confidentiality—they specify ownership
and read permission of data helping to control the propagation of (confidential)
data.

Jif is an extension of the Java language [11] implementing the decentralized
label model. In this paper we will incorporate the decentralized label model into
UML, so UML can be used for deriving Jif code skeletons.

A label consists of a possibly empty set of policies where a policy consists
of a list of principals (e.g. users, groups, or roles). Each policy has a dedicated
principal as its owner. Each owner controls a set of readers that are allowed to
read the data. By definition, an owner is implicitly contained in its reader set.
A principal is allowed to read data if and only if it is contained in the reader set
of all policies of the label attached to the data.

Example 1. The label {Bob : Lise} consists of only one policy where the owner
is Bob and the readers are Bob (the owner is always a reader) and Lise. The
label {Bob : Lise, Lars; Lise :} consists of two policies. Only Lise is allowed to
read the data. She is the only one contained in the reader set of both policies.

Label = {Components | ε}

Components = Component | Components; Component

Component = principal : Principals | identifier | *identifier | this

Principals = principal | Principals, principal | ε

Figure 1. Syntax of Labels in BNF.

In Example 1 labels and principals are static. The advantage of static labels
is that they can be checked at compile-time. Working only with static labels is
however sometimes too restrictive. Thus, there is a need for two new primitive
types label and principal and first-class values of these types represent labels and
principals, respectively. We will see examples of how to use these types later.

Fig. 1 shows the syntax of label expressions where ε denotes the empty word
and symbols in bold represent literals. As can be seen, a label may be empty
(meaning that the data is not confidential) or consist of different components
which we explain in turn.

A component can be a variable denoted by an identifier. Let us consider the
following Jif code:

int{Bob :} x;
int{x} y;

Here the variable x is owned by Bob. In the label for y we have variable x,
meaning that y has the same label as x—in this case {Bob:}. A component can
also be a reference to a label. Let us consider the Jif code:

label{Bob :} lb;
int{∗lb} y;

The label {∗lb} denotes the label stored in lb rather than the label of lb (which
is denoted by {lb} and would be {Bob:} here). Finally, the reserved label {this}
represents the label of an object of the class.

Principals can be arranged in hierarchies where a principal can act for another
principal (“A can act for B” means that A can do anything that B can do
assuming his power). Jif contains an actsFor clause which executes a statement
only if a certain constraint on the principal hierarchy is satisfied. There is also an
actsFor constraint on methods which guarantees that certain defined hierarchies
hold in the method body. The actsFor constraint will be contained in our profile.
For more information on principal hierarchies see [21,22].

In Sect. 4 we will need the join of two labels, which is the least restrictive
label that maintains all restrictions expressed by the two labels. Due to lack of
space we omit a formal definition here (it can be found in [23]), we just give the
following example.4

4 Intuitively, the joined label is built from the union of the owners and the intersection
of their reader sets.

Example 2. The join of labels {Bob : Lise} and {Bob : Lise, Lars; Lise :} from
Example 1 is {Bob : Lise; Lise :}.

2.2 Declassification

Labeling of data guarantees that information does not leak to users without
appropriate authority. Having only labels at hand is however often not suffi-
cient. Sometimes it is necessary to consciously weaken the confidentiality of
data, e.g. when an operation processes confidential data but the result should
be made less confidential to permit the caller to use it. The problem is solved by
giving authority (which consists of a list of principals) to classes and operations
using the Jif keyword where (see example in Fig. 2). An operation must not be
given more authority than its owning class5. Giving the authority (p1, . . . , pn)
to a method means that the method can act on behalf of the principals pi

(even if the caller of the method has lower authority than pi). This can be used
for the declassification of data if the owner of the data is one of the principals
p1, . . . , pn. So, any principal p1, . . . , pn is allowed to relax its own policy (e.g. add
readers) without weakening policies of other principals. E.g. the Jif statement
declassify(e,L) relabels the result of expression e with label L.

class PasswordFile {
private St r ing [] nameList ;
private St r ing { roo t : } [] passwordList ;
public boolean check (St r ing user , S t r ing password)

where author i ty (roo t){
boolean match=fa l se ;
try {

for (int i =0; i<nameList . l ength ; i ++) {
i f (nameList [i] . equa l s (user) &&

passwordList [i] . equa l s (password)) {
match=true ; break ;

}
}

} catch (Nul lPo interExcept ion e) {}
catch (IndexOutOfBoundsException e) {}

return d e c l a s s i f y (match , { user ; password }) ;
}

}

Figure 2. Jif Implementation of Class PasswordFile.

Now, we will consider an example (taken from [22]) where declassification
is needed. Fig. 2 shows a class PasswordFile having an operation check which

5 The Jif checker verifies that this property of the least privilege is obeyed.

takes a login name (user:String) and a password (password:String) and returns
a boolean depending on whether user and password is contained in the arrays
nameList and passwordList, respectively. On the one hand the operation should
return a boolean value (i.e. leaking the information whether the password was
correct), but on the other hand one does not want to leak the whole content
of the array passwordList. To ensure this the elements of the array are labeled
with {root:}. Certainly, one does not want to give the authority root to a normal
user. So, the return value of operation check has to be declassified not to contain
root. This means that principal root is removed from the owners of the return
value (for more information on declassification see [22]). Thus, we have permitted
to leak some information about the array passwordList. Declassification should
be used with care. E.g. the above method can in fact leak all information in
passwordList if the user is given the opportunity to call it repeatedly. We will
come back to this issue later.

3 UML Extension Mechanism

The UML is a general purpose specification language. It can be adapted to
particular domains by defining a profile. A profile is a conservative extension in
the sense that it is not allowed to modify the metamodel. The application of
a profile always results in a model that is still compliant with the metamodel.
Thus, problems concerning semantics and interchangeability between tools are
avoided.

The means for defining a profile are stereotypes, tag definitions, and con-
straints. A stereotype is used for extending metaclasses (defined in the meta-
model) or other stereotypes. Like classes, a stereotype may have properties (in
that context called tag). When a stereotype is applied to a model element, the
values of its defined tag may be referred to as tagged values.

Finally, constraints can be used to define or refine the semantics of model
elements. Constraints can be stated informally (e.g. using natural language) or
formally using an adequate language (e.g. using the Object Constraint Lan-
guage [24] which is an integral part of the UML).

4 Profile for Decentralized Label Model

In this section we define our profile which we call UMLsProfile (profile for secu-
rity in UML). Like our previous UML extension UMLS [12], it is built on the
decentralized label model. It permits confidentiality aspects to be considered in
class diagrams.

4.1 Stereotypes

The aim of our profile is to provide stereotypes for annotating classes, attributes,
operations, parameters, and return types of operations with confidentiality labels

and constraints. Tab. 1 shows the metaclasses that are extended (first column)
by stereotypes (second column). The tags of the stereotypes are defined in the
third column. The meaning of the stereotypes is explained in the following.

Metaclass, Stereotype Stereotypes Tags

TypedElement confidential l:label

Class authorityConstraint authority:principal[*]

Operation authorityConstraint authority:principal[*]

actsForConstraint actsFor:(principal,principal)[*]

callerConstraint caller:principal[*]

beginLabel l:label

endLabel l:label

<< send >> sendConfidential l:label

Table 1. Metaclasses extended by Stereotypes.

By using stereotype confidential, labels can be attached to instances of Typed-

Element which are attributes, formal parameters and return type of operations,
and the values of objects.

As described in Sect. 2.2 classes might be given authority to permit declas-
sification. In Tab. 1 we can see that this is achieved by extending the metaclass
Class with stereotype authorityConstraint.

In addition to authorityConstraint, the profile (and Jif) offer the callerCon-

straint and actsForConstraint which extend metaclass Operation. The callerCon-

straint allows a caller to dynamically grant authority to the invoked operation.
An operation with a callerConstraint may be called only if the caller possesses
the required static authority.

In a hierarchy of principals, some principals can act for some other princi-
pals. This can be specified using the stereotype actsForConstraint which can be
attached to operations. Then the operation can only be invoked if the specified
constraint holds at the call site.

To prevent information leaks through implicit flows, the compiler associates
a program-counter label with every statement and expression, representing the
information that might be learned by their evaluation. A beginLabel can be
specified to restrict the program-counter label at the point of invocation of a
method—preventing a method from causing side-effects that have higher security
than the value of beginLabel. Stereotype endLabel specifies what information can
be learned from the fact that the method terminates normally. We will see an
example on how to use them later.

It is also possible to give labels to individual exceptions which an operation
might throw. In UML there already exists a stereotype send which can be ap-
plied to dependencies whose source is an operation and whose target is a signal,

specifying that the source sends the target signal. In Tab. 1, stereotype sendCon-

fidential extends stereotype send. This permits us to attach labels to exceptions
that are potentially sent by an operation.

The whole profile UMLsProfile is depicted in Fig. 3. The figure also shows the
tags (and their types) of the stereotypes.

Figure 3. The Profile UMLsProfile.

The tags defined for the stereotypes above are of type label, principal, or are
arrays of the respective type. The syntax of values of these types is defined in
Fig. 1.

4.2 Examples and Default Values

In this section we first consider an example which involves labels and explain
which default labels apply if no label is given. Thereafter, we consider declassi-
fication and shortly discuss the profile.

Labels. Fig. 4 shows an example of UMLsProfile applied to a class Account.
In a UML diagram, the tagged values of a stereotype are denoted by UML
notes attached to the element that is adorned with the stereotype. Consider
for example attribute x annotated with stereotype confidential. A UML note is
attached to attribute x defining its label {Bob:}. Attribute y is annotated with
a label containing variable x. This means that the value of the label will be
the same as for attribute x—in this case {Bob:}. Attribute z has no label. For
attributes the default label is the empty label meaning that the attribute does
not contain confidential data.

Next, let us consider the annotation of operation parameters. The formal
parameter of operation set has the static label {Bob: Lise}. According to Jif,

Figure 4. Example of Applying the Profile to Attributes and Operations.

this means that the set operation can only be invoked with arguments having
this label. It would be quite tedious if one had to define a specific operation
for every static label. The solution to that problem is label polymorphism. For
example, in Fig. 4 the parameters x and y of operation add have no labels. This
means that add can be called with any labels for its arguments—x and y will
get the same labels as the arguments.

The first parameter of method compute shows how one can access the label
contained in a variable of type label. The syntax is similar to the dereference
operator * in the programming language C. Thus, the label {∗lb} denotes the
label contained in lb rather than the label of lb (which is denoted by {lb}). When
compute is invoked with the label value {Bob:} for parameter lb, parameter x

will also have the label {Bob:}. The second parameter lb of method compute is
of type label. lb is a dynamic label and it would be legal to annotate it with a
static label (e.g. {Bob : Lise}) since lb is a normal operation parameter.

Operation compare is an example for the use of a begin-label. A begin-label
attached to an operation prevents the operation to be be called from a context
with higher security. The default value for this kind of label is the program-
counter label of the caller. In the example, the begin-label is {Bob:}. It forbids
any assignment to attribute z in the body of compare since the empty label of z

has lower security then the begin-label {Bob:}.

In the operation add we have attached the label {x ; y} to the return type. It
was not necessary to explicitly state the return label in this case since the default
label of the return value is the join of the parameter labels and the end-label,
which in our case is {x ; y}.

If an operation throws an exception, by default the exception has the same
label as the end-label. However, it can also be given a different label as operation
compute shows. Here, the label {Bob:} is attached to the exception.

Declassification. In Sect. 2.2 we considered the class PasswordFile with the
operation check that takes a login name (user:String) and a password (pass-

word:String) and returns a boolean. We argued that the class PasswordFile and
the operation check needed the authority root to be able to declassify the boolean
return value. Fig. 5 shows the class annotated with the authority constraint.
Given this specification the code skeleton in Appendix A is generated automat-
ically, where the type Array < String, {root:} > of passwordList is translated
into an array of type String whose elements are labeled with {root:}.

Figure 5. Example for a Class containing an authorityConstraint.

4.3 Notation

In a UML model the tagged values of a stereotype are denoted by UML notes at-
tached to the element that is adorned with the stereotype. The example in Fig. 4
clearly shows that the default notation for stereotypes and tagged values clutters
up the UML model and makes it hard to read. Fortunately, UML allows a profile
to define its own notation that can be used instead of the standard notation of
the model element which the stereotype is applied to [25, Sect. 18.3.7]6.

Our notation for the extended metaclasses follows the one in UMLS [12] and
is depicted in Tab. 2. For the notation of values of labels and principals we use
the syntax defined in Fig. 1.

Fig. 6 shows the example from Fig. 4 using the new notation. The advantages
of our notation compared to the default notation are obvious.

Since we follow the UML standard, it is possible to use our profile with
any UML-compliant tool. If a tool allows for adapting the concrete syntax, it is
possible to use our more convenient notation. To guarantee interchangeability, it
is however important that the XMI representation of the diagrams is independent
of the chosen notation.

6 Note, that we follow the “UML 2.0 Final Adopted Specification” which has not been
finalized yet.

Metaclass Notation

TypedElement element label

Class Additional compartment for authority (see Fig. 5)

Operation visibility name begin-label (parameter-list) end-label

:return-type-expression return-label constraints

Table 2. Notation for Metaclasses.

Figure 6. Application of UMLsProfile Notation to the Example shown in Fig. 4.

Parameterized Classes. The language Jif offers parameterized classes with
respect to labels and principals. The UML 2.0 (final adopted specification) sup-
ports parameterized classes via the package Template as well. We give a lit-
tle example here since parameterized classes play an important role in making
reusable data structures with respect to labels and principals.

Figure 7. Vector parameterized on Label L.

Figure 7 shows a class Vector parameterized on a label L (in the dashed
box). This label can be used to annotate attributes and operations of the class
and makes it possible to instantiate Vector with different labels. In the example,
attribute length is annotated with the parameter label L. Attribute element is
of an array type which can have two labels: one for the array elements of type
Object (here {L}) and one for the array reference (here {Bob:}).

4.4 Discussion

The decision on what data is confidential is usually not (and should not be) a
programmer’s job. Rather the customer/domain expert has to know which data

is confidential. Our profile permits this decision to be moved from code to the
analysis/design level. We believe that this is crucial for building systems working
with confidential data.

In some cases declassification is needed for being able to intentionally leak
information (as the example from Fig. 2 and Fig. 5 showed). Note, that declas-
sification is extremely powerful but therefore also very dangerous. Again, the
question when to use declassification is an issue to be addressed on the analy-
sis/design level. Also giving authority to classes or methods should be used with
care. The places with authorities are spots where extra care has to be taken.

Finally, a short note on current UML tools. The idea behind producing a
profile is that it can be applied by any UML-compliant tool. However, we en-
countered that most tools are not fully UML-compliant. For example, they do
not allow to attach notes to arbitrary model elements (which is permitted ac-
cording to the UML specification).

5 Related Work

Considering security in UML is a relatively new idea. Blobel, Pharow, and Roger-
France [5] used use cases to consider security in a very informal way in a medical
setting. We find it difficult to say anything about use cases since their semantics is
not very well understood [10]. Furthermore, there has been work on developing
a framework for model-based risk assessment of security-critical system using
UML [13].

In our previous work [12] which was mainly focused on a case study we
have already considered the treatment of confidential data in UML. However,
we extended UML in a non-standard way. Furthermore, some features were left
out, for example the treatment of caller and actsFor constraints. In this paper
we give a more complete treatment of the decentralized label model in a UML-
compliant manner.

The connection between language-based security and security on the specifi-
cation level has been previously established by Mantel and Sabelfeld [20]. Their
approach is more theoretical than ours. We hope that by choosing a more prac-
tical approach we will be able to reach more designers.

Closely related to our research is Jürjens’ work on modeling confidentiality
in UML [15,14,16]. Jürjens also uses the built-in extension of UML to define a
profile called UMLsec. For checking constraints associated with the stereotypes
of his profile, Jürjens defines a precise semantics for a restricted and simplified
fragment of the UML building on a state chart semantics based on abstract state
machines [6].

This approach has some limitations. The developer has to convince himself
that the system is correct by examining the—possibly quite complex—UML
diagrams. Furthermore, it is uncertain that the code created from these diagrams
is correct. However, both problems can be eased by providing tool support.

A more serious problem are covert channels which arise from the concrete
implementation of a program. For example, control flow or information about

termination of a program may reveal confidential information. So, even if confi-
dentiality properties are proven on the UML level, which might be quite difficult
in itself, there might be covert channels in the code. Our approach combining
UML and Jif addresses this problem of indirect information flow [8]. The main
difference between the two approaches is that Jürjens verifies security proper-
ties on specification level while we are working on the code level using the Jif
type checker. So, both techniques should be complementary to each other. Fur-
thermore, the decentralized label model permits more fine-grained control of
confidential data than Jürjens’ approach.

There has been some work that considers role-based access control in a UML
setting [9,19]. Even though we have focused on information flow, there are some
interesting parallels to this research. UMLsProfile/Jif permits declassification of
data which can perhaps be considered as a form of access control.

6 Conclusion and Future Work

In this paper we have presented a profile UMLsProfile incorporating the decen-
tralized label model into the UML. The profile allows fine-grained control of
confidential data.

The decisions on which data must be kept confidential should be made at
an early stage. This work permits confidentiality to be considered in the design
phase of the development process. Using our profile in combination with Jif
therefore contributes to building secure software systems. Jif code skeletons can
be automatically generated from a class diagram making use of UMLsProfile.

In this paper we focused on class diagrams, probably the most important dia-
gram type with a clear semantics that allows for code generation in a straightfor-
ward way. The next step in this line of work is to extend the profile UMLsProfile
the other diagram types considered in UMLS. How Jif code can be generated
from other diagram types needs further investigation.

There is one area we have not addressed in this paper, but which is important
for our work: secure environments. Here, the deployment diagram in UML might
be very useful when specifying secure environments for Jif programs. Further-
more, it would be interesting to look at state charts as well because they can be
used to generate additional code which considers confidentiality. In particular,
Jürjens’ work [15] might be useful to take into account here.

Finally, Jif supports dynamic labels, but only in a restricted way to make
sure that static checking of confidentiality is still possible. The restriction is that
variables of type label may only be used to construct labels if they are immutable.
We believe that this restriction could be dropped if in addition to type checking
a theorem prover is used. The KeY tool [1] seems to be suited for that task for
several reasons. KeY is a tool that supports the specification and verification
of object-oriented software. It supports the specification languages UML/OCL
and the implementation language Java. Thus, KeY seems to fit very well to
UMLsProfile and Jif. Last but not least, KeY has already been successfully used
to analyze secure information flow [7].

Acknowledgment. We thank R. Bubel, A. Roth, A. Sabelfeld, and the anony-
mous referees for important feedback on drafts of the paper.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY Tool. Software
and System Modeling, pages 1–42, 2004. To appear.

2. D. Bell and L. LaPadula. Secure Computer Systems: Mathematical Foundations
and Model. Technical Report MTR 2547 v2, The MITRE Corporation, Nov 1973.

3. E. Bertino, S. Jajodia, and P. Samarati. Access Controls in Object-Oriented
Database Systems: Some Approaches and Issues. In N. Adam and B. Bhargava,
editors, Advanced Database Concepts and Research Issues, LNCS 759, pages 17–44.
Springer, 1993.

4. K. J. Biba. Integrity Consideration for Secure Computer System. Technical Report
ESDTR-76-372,MTR-3153, The MITRE Corporation, Bedford,MA, April 1977.

5. B. Blobel, P. Pharow, and F. Roger-France. Security Analysis and Design Based
on a General Conceptual Security Model and UML. In P. M. A. Sloot, M. Bubak,
A. G. Hoekstra, and B. Hertzberger, editors, High-Performance Computing and
Networking, 7th International Conference, HPCN Europe 1999, Amsterdam, vol-
ume 1593 of LNCS, pages 918–930. Springer, April 12-14 1999.

6. E. Börger, A. Cavarra, and E. Riccobene. Modeling the Meaning of Transitions
from and to Concurrent States in UML State Machines. In Proceedings of the 2003
ACM symposium on Applied computing, pages 1086–1091. ACM Press, 2003.

7. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In R. Gorrieri, editor, Workshop on Issues in the Theory
of Security (WITS). IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

8. D. E. Denning and P. J. Denning. Certification of Programs for Secure Information
Flow. Communications of the ACM, 20(7):504–513, July 1977.

9. P. Epstein and R. Sandhu. Towards A UML Based Approach to Role Engineering.
In RBAC ’99, Proceedings of the Fourth ACM Workshop on Role-Based Access
Control, pages 135–143, October 28-29 1999.

10. G. Génova, J. Llorens, and V. O̧uintana. Digging into Use Case Relationships. In
J. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002, volume 2460 of LNCS,
pages 115–127. Springer, September/October 2002.

11. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

12. R. Heldal and F. Hultin. UMLS Bridging Model-based and Language-based Secu-
rity. In E. Snekkenes and D. Gollmann, editors, Computer Security - ESORICS
2003, volume 2808 of LNCS, pages 235–252. Springer, 2003.

13. S. H. Houmb, F. Braber, M. S. Lund, and K. Stolen. Towards a UML Profile
for Model-Based Risk Assessment. In UML 2002 Satellite Workshop on Critical
Systems Development with UML, pages 79–91, September 2002.

14. J. Jürjens. Secure Java Development with UMLsec. In B. D. Decker, F. Piessens,
J. Smits, and E. V. Herrenweghen, editors, Advances in Network and Distributed
Systems Security, pages 107–124, Leuven, November 26-27 2001. International Fed-
eration for Information Processing (IFIP) TC-11 WG 11.4. Proceedings of the First
Annual Working Conference on Network Security (I-NetSec ’01).

15. J. Jürjens. Towards Development of Secure Systems using UMLsec. In H. Huß-
mann, editor, Fundamental Approaches to Software Engineering (FASE, 4th Inter-
national Conference, Part of ETAPS), volume 2029, pages 187–200, 2001.

16. J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002, volume 2460 of LNCS,
pages 412–425, Dresden, Sept. 30 – Oct. 4 2002. sv. 5th International Conference.

17. D. Kozen. Language-Based Security. In Mathematical Foundations of Computer
Science, pages 284–298, 1999.

18. B. W. Lampson. A Note on the Confinement Problem. Communications of the
ACM, 16(10):613–615, 1973.

19. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In J.-M. Jezequel, H. Hussmann, and S. Cook,
editors, The unified modeling language: model engineering, concepts, and tools; 5th
international, volume 2460, pages 426–441. Springer, 2002.

20. H. Mantel and A. Sabelfeld. A Generic Approach to the Security of Multi-Threaded
Programs. In Proceedings of the 14th IEEE Computer Security Foundations Work-
shop, pages 126–142, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Com-
puter Society Press.

21. A. Myers. Mostly-Static Decentralized Information Flow Control. Technical Report
MIT/LCS/TR-783, MIT, 1999.

22. A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Sym-
posium on Principles of Programming Languages, pages 228–241, 1999.

23. A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Control.
In Symposium on Operating Systems Principles, pages 129–142, 1997.

24. OMG. UML 2.0 OCL Specification. OMG Document, October 2003.
25. OMG. Unified Modeling Language: Superstructure, version 2.0, Final Adopted

Specification. OMG Document, August 2003.
26. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE

J. Selected Areas in Communications, 21(1):5–19, Jan. 2003.
27. F. B. Schneider, G. Morrisett, and R. Harper. A Language-Based Approach to

Security. In R. Wilhelm, editor, Informatics—10 Years Back, 10 Years Ahead.
Conference on the Occasion of Dagstuhl’s 10th Anniversary, volume 2000 of LNCS,
pages 86–101, Saarbrücken, Germany, August 2000. Springer.

A Jif Code Skeleton for PasswordFile

The following Jif code skeleton can be automatically generated from the UML
class diagram depicted in Fig. 5.

class PasswordFile {
private St r ing [] names ;
private St r ing { roo t : } [] passwords ;

public boolean check (St r ing user , S t r ing password) {}
}

