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Abstract. Refinement is a well-established and accepted technique for the systematic development of cor-
rect software systems. However, for the step from already refined specification to implementation, a correct
refinement is often not possible because the data types used in the specification respectively the implementa-
tion language differ. In this paper, we discuss this problem and its consequences, using the integer data types
of Java as an example, which do not correctly refine the mathematical integers Z. We present a solution,
which can be seen as a generalisation of refinement and a variant of retrenchment. It has successfully been
implemented as part of the KeY software verification system.
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1. Introduction

The idea of refinement. Refinement is a well-established and accepted technique for the systematic
development of correct software systems. Starting from an initial formal specification, refinement steps
are performed to obtain a correct implementation—a software system satisfying the specification. Each
refinement step may add more details, e.g. by removing non-determinism.

To guarantee correctness of the system being developed, the refinement steps themselves must be correct,
i.e., they must adhere to certain rules. Then, the refinement process preserves all properties of the abstract
system. They are automatically satisfied by the concrete system as well; it is not necessary to re-prove them.
Only those aspects and details of the concrete system have to be verified that are not present in the abstract
one.
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The goal of refinement is to eventually obtain a software system that is correct by construction as only
(correct) refinement steps are performed from specification to code.

In this paper, we concentrate on the refinement of data types (data refinement), in particular the refine-
ment of integer data types. Following [HHS86], a data refinement is correct if in all circumstances and for
all purposes the concrete data type can be validly used in place of the abstract one.

The problem. In practice, constructing correct refinement steps is not always easy—and sometimes not
even possible. A crucial situation where a correct data refinement is often not possible is the step from an
already refined specification to implementation code. The problem is that this (last) step involves a switch
from the specification language to the implementation language (the earlier refinement steps stay within the
specification language).

In particular, specification languages usually offer integer data types with an infinite domain, for which
the finite data types in programming languages are not a correct refinement.

Consider, for example, the following Java method, which—supposedly—implements an operation com-
puting the sum of two integers:

int sum( int x , int y ) {
return x+y ;

}

At first sight, this method seems to satisfy its specification, i.e., to return the mathematical sum of the
parameter values. In truth, however, the implementation is not correct. The reason is that the (finite) Java
type int used in the implementation does not correctly refine the (infinite) specification type Z. In particular,
the Java operation +int is not a refinement of the operation +Z, because it computes the sum of the two
arguments modulo the size of the type int, e.g.:

2147483647 +Z 1 = 2147483648 but
2147483647 +int 1 = −2147483648

Possible solutions. There are basically three possibilities to overcome the problem outlined above:

1. Changing the data type operations on the implementation level, such that the refinement becomes correct.
This amounts to adapting the implementation data type to the specification type.

2. Changing the data type operations on the specification levels (including abstract ones), such that the
refinement becomes correct. This amounts to adapting the specification data type to the implementation
type.

3. Allowing a limited and controlled incorrectness in the “refinement” steps.

In the following, we explain why the third possibility is the best solution (although at first sight it may
seem to jeopardise correctness), and we describe how it can be used in such a way that correctness of the
overall software verification process is preserved.

The first two possibilities have serious drawbacks. On the one hand, changing and adapting the imple-
mentation data type (e.g., using long number arithmetics instead of the built-in integer types), introduces
unnecessary and serious inefficiencies into the implementation. Moreover, such data type implementations
are not always readily available. On the other hand, using an implementation language data type on the
specification level—this approach is, for example, pursued in the Java Modeling Language (JML) [LBR99]—
contradicts the idea that specifications should be abstract and hide implementation details. Humans think in
terms of infinite (mathematical) types. It is, thus, not surprising that quite a number of JML specifications
are inadequate, i.e. do not have the intended meaning [Cha03].1 Inadequate specifications are expensive to
fix since they are at the root of the development process. Moreover, some implementation details may not
even be known during specification, e.g. the implementation language or the concrete data types that will
be used. Obviously, an early specification containing such details is neither reusable nor comprehensive and
hence more likely to be inadequate.

1 To solve this problem, Chalin [Cha03] proposes to extend the JML, which does not support infinite integer types, with a type
infint with infinite range. That, however, introduces into JML the problem of “incorrect refinement”.
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Our approach to solving the problem. The price we have to pay when we use the third of the above
possibilities, i.e., allowing a limited incorrectness in the “refinement” steps, is that the implementation is
not any more automatically correct “by refinement.” Rather, additional proofs are required. This approach,
which can be seen as a generalisation of refinement, is an instance of Banach and Poppleton’s retrenchment
paradigm [BP98].

The advantage of casting non-refinement steps into the retrenchment framework is that it becomes explicit
where exactly the refinement conditions are violated and, thus, where correctness cannot be shown once and
for all (as it is the case with correct refinement). Instead, we show the correctness of a program containing
retrenchment by individually verifying critical situations. Note, that these additional proofs are still done at
proof time. After these proofs have been done, no run-time checks are required.

In the following, we dicuss two instances of this approach:

• Cases for which the refinement is not correct are shown not to occur (this amounts to strengthening the
preconditions for the invocation of the “refined” data type operations).
Considering as an example the operation +int respectively +Z, one has to show for each individual
invocation of x+ y that the result does not exceed the (finite) range of Java int, i.e., does not lead to
an overflow.

• It is shown that, for those cases where the refinement is not correct, the “refined” data type operations
are sufficient (this amounts to weakening the postcondition).
For the example of +, one has to show for the particular situation that using x+int y instead of x+Z y
does not lead to incorrectness.

We will argue that the first of the above two possibilities is the better choice. It is implemented in the
KeY system, which is an integrated tool for specification and verification of Java programs.

In the KeY system’s calculus, the exclusion of non-refinement cases for integer operations results in
additional proof obligations stating that the result of an operation does not exceed the (finite) range of the
expression type. By verifying these additional proof obligations, we establish that the programming language
types are only used to the extent that they indeed are a refinement of the specification language types (the
non-refinement cases do not occur). As said above, this check cannot be done once and for all, as it is the
case for a correct refinement, but has to be repeated for each particular program. Since this is tedious and
error-prone if done by hand we have integrated the generation of the additional proof obligation into our
verification calculus. Most of these proof obligations are discharged automatically by our prover.

Remark on languages. In this paper, we use Java as implementation language, and the specification
language we consider is UML/OCL. Note, however, that our particular choice of specification and imple-
mentation languages is not crucial to the approach we present in this paper. The languages UML/OCL and
Java can be substituted by almost any other specification and implementation languages (e.g. Z [Spi92] or
B [Abr96] respectively C++). We use UML/OCL and Java mainly because the work presented here has
been carried out as part of the KeY project (see Sect. 4.1).

Also, note, that although we concentrate on the Java type int, everything said in the following applies
just as well to the other Java integer types byte, short, and long.

Structure of this paper. The paper is organised as follows. In Sect. 2, we formally define and describe
the notion of data refinement and the more general data retrenchment. In Sect. 3, we apply our retrenching
approach to the particular case of integer arithmetic. Our implementation as part of the KeY system is
presented in Sect. 4, including a description of the arithmetic rules used in the KeY program verification
calculus. Sect. 5 contains an extended example; and finally, in Sect. 6, we discuss related work.

2. Refinement and Retrenchment

2.1. Basic Definitions

Operations are relations on states and input/output values. We do not define what a state is, because the
internal structure of states is not relevant for the approach presented in this paper.
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Definition 1. (Operation, Termination) Let S be a set of states, Input a set of possible inputs, and
Output a set of possible outputs. An operation

Op ⊆ S × Input× S ×Output

is a relation on states and input/output values. We write s[[out = Op(in)]]s′ iff (s, in, s′, out) ∈ Op.
Operation Op started in a state s ∈ S with an input in terminates iff there exists a state s′ ∈ S and an

output out such that s[[out = Op(in)]]s′. This is denoted by s |= Op(in)↓. �

Without loss of generality, we only consider operations that have an output. Operations without output
are considered to return an arbitrary value. For non-deterministic programming languages the definition of
termination expresses that there is a possibility for the operation to terminates, whereas for a deterministic
language the operation always terminates.

Definition 2. (Abstract Data Type) An abstract data type (ADT) is a 4-tuple (S,V , Init , {Opi}i∈I),
where S is a set of states, Init ⊆ S is an initialisation operation, and Opi (i ∈ I) are operations on S and
the set V = Input = Output of input/output values. �

For ADTs we only allow operations that have a single input and a single output value, and we assume
that all operations of an ADT have the same input and output type. That is not a real restriction, since
the set V = Input = Output can be defined to be the union of all input and output types of the individual
operations. The initialisation operation of an ADT is a unary predicate defining its sets of initial states.

Definition 3. (Operation Specification) Given sets S of states, Input of input, and Output of output
values, an operation specification is a pair (Pre ,Post) of predicates

Pre ⊆ S × Input and Post ⊆ S × Input × S × Output .

�

Definition 4. (Operation Correctness) Given sets S of states, Input of input, Output of output values,
and an operation specification (Pre ,Post). An operation Op ⊆ S × Input × S × Output is correct w.r.t.
(Pre ,Post) iff, for all (s, in, s′, out) ∈ Op,

(s, in) ∈ Pre implies (s, in, s′, out) ∈ Post .

�

For a more concise presentation, we use the following notation conventions: A variable sabstr always
ranges over a set Sabstr of states. The same holds analogously for sconcr and s. The input value in and the
output value out range over Input and Output, respectively. A subscripted variable like inabstr ranges over
Inputabstr , etc.

2.2. Refinement

As explained in the introduction, the basic idea of refinement is quite simple and independent of a particular
computational formalism. It is based on the principle of substitutivity which states that it is acceptable to
replace an operation by another operation as long as it is impossible for the environment to observe the
substitution. In this paper we follow the definition of refinement given by Boiten and Derrick [DB01].

2.2.1. Data Refinement

Data refinement is a relation between a (concrete) operation and another (abstract) operation, where the
concrete operation is supposed to simulate the abstract one. These operations are associated with ADTs
that may differ in their sets Sconcr respectively Sabstr of state spaces. They must, however, have the same
sets of input/output values.

Refinement requires three conditions to be met:

• The initialisation condition requires that every initial state of the concrete type must be related to some
initial state of the abstract type.
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• The concrete operation must not terminate in any state that is inconsistent with the behaviour of the
abstract operation (correctness condition). This implies an elimination of non-determinism or a stronger
postcondition.

Definition 5. (Forward Simulation Data Refinement) Let

A = (Sabstr ,V , Initabstr , {Opabstr ,i}i∈I) and C = (Sconcr ,V , Initconcr , {Opconcr ,i}i∈I)

be ADTs with the same sets Input = Output = V for all operations Opabstr ,i and Opconcr ,i.
The ADT C is a data refinement of the ADT A via a retrieve relation R ⊆ Sabstr ×Sconcr iff the following

holds:

Initialisation: For every state sconcr ,

if Initconcr(sconcr ) ,
then there exists a state sabstr with Initabstr (sabstr ) and R(sabstr , sconcr) .

Correctness: For all states sabstr , sconcr , s
′

concr , all input values in, and all output values out,

if sabstr |= Opabstr (in)↓ and R(sabstr , sconcr ) and sconcr [[out = Opconcr (in)]]s′concr ,
then there exists a state s′

abstr
with sabstr [[out = Opabstr (in)]]s′

abstr
and R(s′

abstr
, s′concr ) .

�

The above version of refinement only works for partial correctness. If termination properties are to be
preserved as well, an additional applicability condition has to be used ensuring that the concrete operation
is defined on all states on which the abstract operation is defined:

if sabstr |= Opabstr (in)↓ and R(sabstr , sconcr ) ,
then sconcr |= Opconcr (in)↓ .

There are several other versions and variants of refinement. In IO refinement[BD98], for example, the
sets of input and output values of the abstract respectively the concrete operation are allowed to differ (one
may want to use, e.g., binary numbers for abstract inputs and decimal numbers for concrete inputs).

2.2.2. Operation Refinement

In the following, we concentrate on a restricted version of refinement, called operation refinement, where the
concrete and the abstract operation are associated with the same ADT and, thus, the same state space.

Definition 6. (Operation Refinement) An operation Opconcr is an operation refinement of an opera-
tion Opabstr (over the same state space S) iff, for all states s, s′, all input values in, and all output values out,

if s |= Opabstr (in)↓ and s[[out = Opconcr (in)]]s′ then s[[out = Opabstr (in)]]s′ .

�

Theorem 1. (Correctness w.r.t. Refinement) Let Opabstr , Opconcr be operations over the same state
space, and let (Pre ,Post) be a specification.

If

• Opabstr is correct with respect to (Pre ,Post) and

• Opconcr is an operation refinement of Opabstr ,

then Opconcr is correct with respect to (Pre,Post). �

Proof. Trivial.

2.3. Retrenchment

Retrenchment was devised by R. Banach and M. Poppleton [BP98] as a generalisation of refinement. Their
motivation was the observation that refinement and even liberalisations thereof, like IO refinement [BD98],
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are too restrictive for most realistic system developments. For example, real numbers cannot be refined to
floating point numbers, and the (mathematical) integers cannot be refined to Java integers (see Sect. 1).

The formal definition of retrenchment uses, in addition to a retrieve relation R (as in data refinement),
two more relations, called within W and concedes C. The within relation W is used to limit the set of states
and inputs for which the relationship between abstract and concrete operations needs to be established. The
concedes clause deals with the case where W holds but the retrieve relation R between abstract and concrete
post state cannot be established.

Definition 7. (Retrenchment) Let

A = (Sabstr ,Vabstr , Initabstr , {Opabstr ,i}i∈I) and C = (Sconcr ,Vconcr , Initconcr , {Opconcr ,i}i∈I)

be ADTs with Inputabstr = Outputabstr = Vabstr for all operations Opabstr ,i and Inputconcr = Outputconcr =
Vconcr for all operations Opconcr ,i.

The ADT C is a retrenchment of the ADT A via

– a retrieve relation R ⊆ Sabstr × Sconcr ,

– a within relation W ⊆ Inputabstr × Inputconcr × Sabstr × Sconcr , and

– a concedes relation C ⊆ Sabstr × Sconcr × Sabstr × Sconcr × Outputabstr × Outputconcr

iff the following holds:

Initialisation: For every state sconcr and all input values inabstr , inconcr ,

if Initconcr(sconcr ) ,
then there exists a state sabstr with Initabstr (sabstr ) and R(sabstr , sconcr) .

Correctness: For all states sabstr , sconcr , s
′

concr , all input values inabstr , inconcr , and all output values outconcr ,

if sabstr |= Opabstr (in)↓ and R(sabstr , sconcr ) and W (inabstr , inconcr , sabstr , sconcr )

and sconcr [[outconcr = Opconcr (inconcr )]]s
′

concr , then there exist s′
abstr

and outabstr with
sabstr [[outabstr = Opabstr (inabstr )]]s

′

abstr
and

R(s′
abstr

, s′concr) or C(sabstr , sconcr , s
′

abstr
, s′concr , outabstr , outconcr ) .

�

The initialisation condition is the same as for data refinement (Def. 5). The correctness condition for
retrenchment is more interesting. It trivially holds if W is false , i.e., such states are not further considered.
While the within clause excludes states and/or inputs from consideration, the concedes clause C can be used
to make the correctness condition valid for state pairs, for which the within clause is true but that are not
related via the retrieve relation R.

When gray parts of the condition are removed by defining W ≡ true and C ≡ false , the retrenchment
condition almost coincides with the standard refinement condition. Then, the only difference is that the
input and output values of the concrete and abstract operation may still differ, which is not allowed for
refinement. By defining W ≡ (inabstr = inconcr ) we can ensure that the input values are identical but there
is no way to express that the output values have to be the same since the concedes clause is disjunctively
connected. In order to fix this we supplement the retrieve relation with an output clause O.

Definition 8. (Output Retrenchment) Let A and C be ADTs as in Def. 7.
The ADT C is an output retrenchment of the ADT A via

– a retrieve relation R ⊆ Sabstr × Sconcr ,

– a within relation W ⊆ Inputabstr × Inputconcr × Sabstr × Sconcr ,

– a concedes relation C ⊆ Sabstr × Sconcr × Sabstr × Sconcr × Outputabstr × Outputconcr , and

– an output relation O ⊆ Outputabstr × Outputconcr ,

iff the following holds:

Initialisation: As in Def. 7.
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Correctness: For all states sabstr , sconcr , s
′

concr , all input values inabstr , inconcr , and all output values outconcr ,

if sabstr |= Opabstr (in)↓ and R(sabstr , sconcr ) and W (inabstr , inconcr , sabstr , sconcr) and
sconcr [[outconcr = Opconcr (inconcr )]]s

′

concr , then there exists s′
abstr

, outabstr with
sabstr [[outabstr = Opabstr (inabstr )]]s

′

abstr
and

(R(s′
abstr

, s′concr ) and O(outabstr , outconcr) ) or C(sabstr , sconcr , s
′

abstr
, s′concr , outabstr , outconcr) .

�

Now, in addition to the retrieve relation, the output relation has to hold as well. This generalisation of
retrenchment is called output retrenchment [BJ04].2

2.4. Operation Retrenchment

We now define a special case of retrenchment, called operation retrenchment, where—like in operation
refinement—abstract and concrete operations act on the same state space. Thus, a retrieve relation relating
abstract and concrete states is not required and we get a simpler definition:

Definition 9. (Operation Retrenchment) An operation

Opconcr ⊆ S × Inputconcr × S × Outputconcr

is an operation retrenchment of an operation

Opabstr ⊆ S × Inputabstr × S × Outputabstr

(over the same state space S) via

– a within relation W ⊆ Inputabstr × Inputconcr × S,

– a concedes relation C ⊆ S × S × Outputabstr × Outputconcr ,

– and an output relation O ⊆ Outputabstr × Outputconcr ,

iff, for all states s, s′, all input values inabstr , inconcr , and all output values outconcr ,

if W (inabstr , inconcr , s) and s[[outconcr = Opconcr (inconcr)]]s
′ ,

then there exists an output value outabstr with
s[[outabstr = Opabstr (inabstr )]]s

′ and
O(outabstr , outconcr) or C(s, s′, outabstr , outconcr ) .

�

2.5. Correctness in the Presence of Retrenchment

In case of a (correct) refinement relation between an abstract program and a concrete program the question
of correctness with respect to a specification is easy to answer: from the correctness of the refinement relation
and the correctness of the abstract program immediately follows the correctness of the concrete program. In
case of retrenchment, however, the situation is a bit more involved.

Theorem 2. (Correctness w.r.t. Retrenchment) Let Opabstr , Opconcr be operations, and let (Pre,Post)
be a specification.

If

1. Opabstr is correct with respect to (Pre ,Post) (Def. 4), and

2. Opconcr is an operation retrenchment of Opabstr (Def. 9) via

– a within relation W ⊆ Inputabstr × Inputconcr × S,

– a concedes relation C ⊆ S × S × Outputabstr × Outputconcr , and

2 In the original paper by Banach and Jeske [BJ04], the output relation depends on the same arguments as the concedes clause,
but for our purposes the abstract and concrete outputs outabstr and outconcr are sufficient.
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– an output relation O ⊆ Outputabstr × Outputconcr ,

3. for all input values inconcr and states s,

(a) in case that (inabstr , inconcr , s) ∈ W for some input value inabstr (cases where the within clause holds),

if (s, inconcr) ∈ Pre ,
then

O(outabstr , outconcr) or C(s, s′, outabstr , outconcr )
implies

inabstr = inconcr and outabstr = outconcr

or
(s, inconcr , s

′, outconcr ) ∈ Post
for all states s′ and output values outconcr with s[[outconcr = Op(inconcr )]]s

′ ,

(b) in case that (inabstr , inconcr , s) 6∈W for all input values inabstr (cases excluded by the within clause),

if (s, inconcr) ∈ Pre ,
then (s, inconcr , s

′, outconcr ) ∈ Post
for all states s′ and output values outconcr with s[[outconcr = Op(inconcr )]]s

′ ,

then Opconcr is correct with respect to (Pre,Post). �

Proof. Let s be a state and inconcr be an input with (s, inconcr ) ∈ Pre.
We have to show that (s, inconcr , s

′, outconcr) ∈ Post holds for all states s′ and output values outconcr

with s[[outconcr = Opconcr (inconcr )]]s
′.

Case 1: In case that (inabstr , inconcr , s) 6∈ W for all input values inabstr , Condition (3.b) applies, and
(s, inconcr , s

′, outconcr) ∈ Post follows immediately.
Case 2: In case that (inabstr , inconcr , s) ∈W for some input value inabstr , we can conclude that at least one

of the clauses O(outabstr , outconcr ) and C(s, s′, outabstr , outconcr ) holds from the assumption that Opconcr is a
retrenchment of Opabstr . That implies inabstr = inconcr and outabstr = outconcr or (s, inconcr , s

′, outconcr ) ∈
Post by Condition (3.a). In the latter case we are done. In the former case, if inabstr = inconcr and
outabstr = outconcr , we use the assumption (s, inconcr) ∈ Pre, i.e., the precondition holds for the concrete
operation. Since the input values inabstr , inconcr are equal, that implies (s, inabstr ) ∈ Pre. By Condition (1),
we know that the abstract operation satisfies the specification. Thus, (s, inabstr , s

′, outabstr ) ∈ Post, and,
using the identity of the output values outabstr , outconcr , we get (s, inconcr , s

′, outconcr ) ∈ Post.

As compared to refinement, when retrenchment is used to establish correctness of the concrete opera-
tion Opconcr , the additional Condition (3) in Theorem 2 has to be proved.

Note that, although Condition (3.a), which handles cases for which the within clause W is true, looks
more complicated than Condition (3.b), it is actually the “harmless” one. In particular, if the definitions

O(outabstr , outconcr) ≡ inabstr = inconcr ∧ outabstr = outconcr

C(. . .) ≡ false

for the output and the concedes clauses are used, Condition (3.a) is trivially true for all cases where it
applies. Even if other definitions for O and C are used, the particular postcondition Post has rarely to be
considered. On the other hand, checking Condition (3.b) always involves the particular postcondition and,
thus, the particular specification. To conclude, if O and C are well chosen, Condition (3.a) it trivially true,
or at least can be proven once and for all, whereas Condition (3.b) has to be proven for each particular
specification.

3. Retrenching Integers

In this paper, we are not concerned with refinement steps within the specification, such as the refinement
of a Z or OCL specification into a more precise Z respectively OCL specification, because as long as the
language remains the same, at least the built-in integer types remain the same.

Instead we assume that we have a refined specification that is supposed to be implemented using the
Java programming language. We split this step into two:
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1. We assume that the implementation language offers the same infinite types as the specification language,
i.e., we assume that the Java type int exactly corresponds to the mathematical integers Z. We prove
that, using this assumption, the implementation correctly refines the specification. This can, for example,
be proven with the KeY system (see Sect. 4).

2. Now, we consider the relationship between the different integer types. The assumption from (1.) is
dropped, i.e., instead of a virtual Java program written in a language with infinite integer types we
consider the real Java language. Note, that this second step is not a correct refinement but only a
retrenchment. Hence, correctness of the real Java implementation does not automatically follow from
the correctness of the virtual Java implementation. Rather, additional retrenchment conditions have to
be proven, which can also be done using the KeY system.

This break down of the step from specification to code is justified by the fact that programmers may not
be aware of the finiteness of the Java types, and even those that are aware of the problem tend to ignore
it. Thus, many programmers work with the misconception of infinite integers. For most applications this is
not crucial since the range of the Java types is big enough most of the time. But in critical applications this
issue has to be handled correctly and cannot be ignored.

In this paper, we focus on the second step, which in the following is cast into the retrenchment framework.
We present and compare two possible retrenchments that differ in the definition of the within and concedes
clauses. They, thus, differ in the handling of situations where operations on the finite Java integers have
a different behaviour than the corresponding operations on the infinite integers. The first retrenchment,
which we call RetrenchJLS , exactly reflects the Java semantics defined in the Java Language Specifica-
tion (JLS) [GJSB00]. It has a non-trivial concedes clause C, whereas the within clause W only requires the
abstract and the concrete input to be equal. In contrast, the second possibility, which we call RetrenchKeY ,
has a non-trivial within clause, whereas the concedes clause only requires the abstract and the concrete
output to be equal. Both retrenchments are implemented in the KeY system (see Sect. 4) for comparison
reasons but, as we will explain in Sect. 3.4, the KeY approach strongly suggests using RetrenchKeY . Since
in both approaches either the within or concedes clause is the same as for refinement, i.e. abstract and
concrete input respectively output have to be equal, the two approaches are in some sense two extremes of
retrenchments but by no means the only possibilities. One could also think of retrenchments that have both
non-trivial within and concedes clauses.

First, we have to define the family of abstract operations that are retrenched in the following sections.
They exactly correspond to the usual mathematical functions on Z, namely addition, subtraction, multipli-
cation, division, and modulo.

Definition 10. Let S be an arbitrary set of states. Then, for ◦ ∈ {+,−, ∗, /,%}, the (abstract) operation

Opabstr ,◦ ⊆ S × (Z × Z) × S × Z

is defined, for all states s, s′, input values 〈in1, in2〉 and output values out, by

s[[out = Opabstr ,◦(〈in1, in2〉)]]s
′ iff s = s′ and out = in1 ◦ in2 .

�

3.1. Retrenchment by Weakening the Postcondition

Arithmetical operations in Java cause a so-called overflow if and only if the result of an operation would
exceed the range of the type. If overflow occurs, the result is calculated modulo the size of the type. Since int
has a range from MIN int = −2147483648 to MAX int = 2147483647, we first have to normalise the result
before applying the modulo function. Undoing the normalisation thereafter yields the correct result according
to the Java semantics.

Definition 11. The function jmod : Z → Z is defined as

jmod(x) = (x− MIN int) mod (−2 ∗ MIN int) + MIN int .

�
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Definition 12. For ◦ ∈ {+,−, ∗, /,%}, the (concrete) operation

OpJava
concr ,◦ ⊆ S × (Z × Z) × S × Z

is defined, for all states s, s′, input values 〈in1, in2〉 and output values out, by

s[[out = OpJava
concr ,◦(〈in1, in2〉)]]s

′ iff s = s′ and out = jmod(in1 ◦ in2) .

�

The following theorem provides the within, the concedes, and the output relation for which the operations
OpJava

concr ,◦ are retrenchments of Opabstr ,◦ (◦ ∈ {+,−, ∗, /,%}).

Theorem 3. For every ◦ ∈ {+,−, ∗, /,%}, the operation OpJava
concr ,◦ is an operation retrenchment of Opabstr ,◦

via the relations defined by:

– W (inabstr , inconcr , s) iff inabstr = inconcr ,

– C(s, s′, outabstr , outconcr ) iff outconcr = jmod(outabstr ) and outabstr 6= outconcr ,
3

– O(outabstr , outconcr) iff outabstr = outconcr .

�

Proof. Given states s, s′, input values inabstr ∈ Z × Z, inconcr ∈ Z × Z, and an output value outconcr ∈ Z,
we have to show that, under the assumptions

– inabstr = inconcr and

– s[[outconcr = OpJava
concr (inconcr )]]s

′,

there exists an output value outabstr with

– s[[outabstr = Opabstr (inabstr )]]s
′ and

– outabstr = outconcr or
outconcr = jmod(outabstr ) and outabstr 6= outconcr .

But this follows immediately from Def. 10 and 12.

3.2. Incidental Correctness

As explained in Sect. 2.5, retrenchment is—in contrast to refinement—not correctness preserving. Neverthe-
less, correctness of the concrete program can be established by proving additional conditions. In certain cases,
in particular if a non-trivial concedes clause is used, that may lead to what we call “incidental correctness”,
a term that is explained in the following.

3.2.1. Example

Assume that a specification for an operation addTwo is given that consists of the precondition even(x) and
the postcondition even(result), where result denotes the output of the operations. The Java implementation
of addTwo is as follows:

int addTwo( int x ) {
return x+2;

}

Considering the first step described in Sect. 2.1, i.e., assuming that the Java type coincides with the
mathematical integers, it is obvious that the implementation satisfies the specification.

3 The condition outabstr 6= outconcr could be omitted but has the advantage of making the concedes clause C and the output
clause O disjoint.
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In the second step, we handle the retrenchment where the infinite integer type is replaced by the finite
Java type int. Obviously, for every input inconcr ∈ int there is an input inabstr ∈ Z with inabstr = inconcr ,
i.e., an abstract value for whichW holds. Thus, we can forget about the proof obligation from Condition (3.b)
in Theorem 2, and we only have to consider Condition (3.a), which in the example reduces to:

if even(x) ,
then

x+Z 2 = x+int 2 or x+int 2 = jmod(x+Z 2)
implies

x+Z 2 = x+int 2 or even(x+int 2).

Let us consider the premiss of the implication. The first disjunct constitutes the “normal” case where the
concrete operation yields the same result as the abstract operation. It obviously implies the right-hand side
of the implication. The second disjunct is the concedes clause of the retrenchment, which says that the result
of the concrete operation is equal to the result of the abstract operation modulo −2 ∗ MIN int, i.e., this is
the case where the concrete operations does not correctly simulate the abstract one. Incidentally, however,
in our example −2∗MIN int is even and thus also (x+ 2) mod (−2 ∗ MIN int) is even under the precondition
that x is even. This means that, even if the concrete operation has a different behaviour than the abstract
one the postcondition is still satisfied, i.e. the implementation is correct.

3.2.2. The Danger of Incidental Correctness

In general, we call a program incidentally correct, if its correctness has been established using retrenchment
Theorem 2 via a necessarily non-trivial concedes clause C (i.e., the theorem does not hold any more if C is
replaced by false).

Correctness in this case may be called incidental since “luckily” the postcondition holds even if the
concrete type yields a result different from the abstract result. A user who is not aware of the “luck”
involved may think that the same automatically holds true for other postconditions, which it does not.

Programmers tend to use retrenched types as if they were refined types, i.e., the fact that there is a
non-trivial concedes clause is ignored. And in fact, the concedes clause often does not play a role since the
concrete program solely works on the part of the domain where the concedes clause is not required (most
Java programs do not exceed (overflow) the range of the type int). However, for critical applications we
cannot trust our luck and hope that a program does not “make use” of the concedes clause. If it does, there
are two possibilities. First, the postcondition may not follow from the concedes clause. Then the program
is in fact incorrect. Second, the concedes clause may imply the postcondition, in which case the program is
correct. Still, we argue that the second case may cause problems in an ongoing development process. The
reason is that the program can run into situations where the concrete type has a different behaviour than
the abstract one, though the specification still holds in these exceptional cases. Since the program behaves
correctly it may remain hidden from the programmer that the program runs into exceptional situations.
Only an inspection of the correctness proof would reveal the fact the concedes clause is actually used. If
the developer does not do that (the proof may be constructed automatically or by someone else), the true
behaviour may diverge from the developer’s intuition and understanding of the program. This is dangerous
in an ongoing software project, where programs and even specifications are often modified. Then, a wrong
understanding of the internal program behaviour and the fact that the particular concedes clause may not
work for other postconditions easily leads to errors that are hard to find, precisely because the program
behaviour is not understood.

3.3. Retrenchment by Strengthening the Precondition

The operations OpKeY
concr ,◦ (◦ ∈ {+,−, ∗, /,%}) that we define for the second retrenchment differ from the

abstract operations only on those parts of the input domain Z × Z where the result of the operation would
exceed the bounds MIN int or MAX int. For these cases OpKeY

concr ,◦ does not terminate.

Definition 13. The predicate Range ⊆ Z is defined by

Range(x) iff MIN int ≤ x ≤ MAX int .

�
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Definition 14. For ◦ ∈ {+,−, ∗, /,%}, the concrete operation

OpKeY

concr ,◦ ⊆ S × (Z × Z) × S × Z

is defined, for all states s, s′, input values 〈in1, in2〉, and output values out, by

s[[out = OpKeY

concr ,◦(〈in1, in2〉)]]s
′ iff (i) s = s′ ,

(ii) out = in1 ◦ in2 , and
(iii) if Range(in1) and Range(in2) then Range(out) .

�

Theorem 4. For every ◦ ∈ {+,−, ∗, /,%}, the operation OpKeY
concr ,◦ is an operation retrenchment of Opabstr ,◦

via the relations defined by:

– W (inabstr , inconcr , s) iff (i) inabstr = inconcr and (ii) if Range(inconcr,1) and Range(inconcr,2) then
Range(inconcr,1 ◦ inconcr,2),

– C(s, s, outabstr , outconcr ) ≡ false ,

– O(outabstr , outconcr) iff outabstr = outconcr .

�

Proof. Given states s, s′ ∈ S, input values 〈inabstr ,1, inabstr ,2〉, 〈inconcr,1, inconcr ,2〉 ∈ Z × Z, and an output
value outconcr ∈ Z, we have to show, under the assumptions

– s[[outconcr = OpKeY
concr (inconcr )]]s

′,

– inabstr = inconcr , and

– if Range(inconcr,1) and Range(inconcr,2) then Range(inconcr,1 ◦ inconcr,2),

that there exists an output value outabstr with

– s[[outabstr = Opabstr (inabstr )]]s
′ and

– outabstr = outconcr

which follows immediately from Def. 10 and 14.

For the KeY system, we make use of the following corollary of Theorem 4 stating that a program where
the abstract operations Opabstr ,◦ (see Def. 10) are replaced with the retrenched operations OpKeY

concr ,◦ (see
Def. 12) is correct if the program is correct before and the within clause W of the retrenchment always holds
when the concrete operation is applied.

Corollary 1. Let pabstr be a program using the abstract operations Opabstr ,◦, and let pconcr be a program
that is the result of replacing Opabstr ,◦ in pabstr with the concrete operations OpKeY

concr ,◦ (◦ ∈ {+,−, ∗, /,%}).
Further, let (Pre ,Post) be a specification.

If

1. pabstr satisfies (Pre ,Post),

2. For all occurrences of the abstract operations in pabstr with input 〈inabstr ,1, inabstr ,2〉, the respective
occurrences of concrete operations in pconcr are invoked with inputs 〈inconcr ,1, inconcr,2〉 such that

if Range(inconcr,1) and Range(inconcr,2) then Range(inconcr,1 ◦ inconcr ,2) ,

then pconcr satisfies (Pre ,Post). �

When the program verification calculus implemented in the KeY system (see Sect. 4.2) is used to prove
that a program pabstr satisfies a specification (Pre ,Post) (Condition (1) in Corollary 1), it automatically
generates proof goals for Condition (2) as well. Thus, when the proof succeeds, Corollary 1 implies that not
only does pabstr satisfy the specification but so does pconcr .

Proving pconcr to be correct, however, is not really the end of the story. What we actually have to establish
is the correctness of the Java implementation pJava with operations OpJava

concr ,◦. Correctness of pJava does not

automatically follow from the correctness of pconcr since the operations OpJava
concr ,◦ are not correct refinements

of OpKeY
concr ,◦ making another retrenchment step necessary.
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Fortunately, the operations OpKeY
concr ,◦ are designed in such a way as to make this final retrenchment step

quite simple. The operations OpJava
concr ,◦ are operation retrenchments of the operations OpKeY

concr ,◦ via the within
condition

W (inabstr , inconcr , s) iff Range(inconcr,1) and Range(inconcr,2) .

For Java programs that within condition W is trivially satisfied because a Java variable and, thus, the
input to a Java operation can never have a value outside the range of its type. It is, therefore, not necessary
to generate proof obligations for the above within clause (i.e., this particular retrenchment behaves similar
to refinement).

3.4. Comparison

We argue that the operations OpKeY
concr ,◦ and retrenchment RetrenchKeY are more suited for program verifi-

cation than the operations OpJava
concr ,◦ and RetrenchJLS , for the following reasons.

• Retrenchment RetrenchKeY has, in contrast to RetrenchJLS , a trivial concedes clauseW ≡ false and thus
prevents incidentally correct programs, which are a source of error in an ongoing software development
process (see Sect. 3.2).

• Using RetrenchJLS introduces the modulo function into arithmetical terms, which makes proving more
complicated and unintuitive. Our experience shows that many proof goals involving integer arithmetics
(that remain after the rules of our program verification calculus have been applied to handle the pro-
gram part of a proof obligation) can be discharged automatically by decision procedures for arithmetical
formulas. In the KeY prover we make use of freely available implementations of arithmetical decisions
procedures, like the Cooperating Validity Checker [SBD02] and the Simplify tool, which is part of ES-
C/Java [ESC]. Both do not work for modulo arithmetics.

4. Implementation

In this section we describe how the retrenchment RetrenchKeY described in Sect. 3.3 is implemented in the
KeY system.

4.1. Background

The work reported in this paper has been carried out as part of the KeY project [ABB+05, ABB+00] (see
http://www.key-project.org). The goal of KeY is to enhance a commercial CASE tool with functionality
for formal specification and deductive verification and, thus, to integrate formal methods into real-world
software development processes. We decided to use UML/OCL as specification language since the Unified
Modeling Language (UML) [Obj99] has been widely accepted as the standard object-oriented modelling
language and is supported by a great number of CASE tools. The programs that are verified should be
written in a “real” object-oriented programming language. We decided to use Java (actually KeY only
supports the subset JavaCard, but the difference is not relevant for the topic of this paper) since it is a
relevant language that is used in practice and that is, due to its design, relatively well accessible to program
verification (compared to other language like, e.g., C++).

We use an instance of dynamic logic (DL) [Har84, HKT00, KT90, Pra77]—which can be seen as an
extension of Hoare logic—as the logical basis of the KeY system’s software verification component. Deduction
in DL is based on symbolic program execution and simple program transformations and is, thus, close to a
programmer’s understanding of Java. DL is used in the software verification systems KIV [BRS+00] and
VSE [HLS+96] for (artificial) imperative programming languages. More recently, the KIV system supports
also a fragment of the Java language [Ste01]. In both systems, DL was successfully applied to verify software
systems of considerable size.

DL can be seen as a modal logic with a modality 〈p〉 for every program p (we allow p to be any sequence
of legal JavaCard statements); 〈p〉 refers to the successor worlds (called states in the DL framework) that
are reachable by running the program p. In standard DL there can be several such states (worlds) because
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the programs can be non-deterministic; but here, since JavaCard programs are deterministic, there is
exactly one such world (if p terminates) or there is no such world (if p does not terminate). The formula 〈p〉ψ
expresses that the program p terminates in a state in which ψ holds. A formula φ → 〈p〉ψ is valid if for every
state s satisfying pre-condition φ a run of the program p starting in s terminates, and in the terminating
state the post-condition ψ holds. The formula φ→ [p]ψ expresses the same, except that termination of p is
not required, i.e., ψ only has to hold if p terminates.

Thus, the formula φ → [p]ψ is equivalent to the Hoare triple {φ}p{ψ}. But in contrast to Hoare logic,
the set of formulas of DL is closed under the usual logical operators: In Hoare logic, the formulas φ and ψ
are pure first-order formulas, whereas in DL they can contain programs. DL allows to involve programs in
the descriptions φ respectively ψ of states. For example, using a program, it is easy to specify that a data
structure is not cyclic, which is impossible in pure first-order logic. Also, all Java constructs are available
in our DL for the description of states (including while loops and recursion). It is, therefore, not necessary
to define an abstract data type state and to represent states as terms of that type; instead DL formulas can
be used to give a (partial) description of states, which is a more flexible technique and allows to concentrate
on the relevant properties of a state.

4.2. Sequent Calculus for Integer Retrenchment

4.2.1. Overview

The KeY system’s deduction component uses the program logic JavaDL, which is a version of Dynamic Logic
modified to handle JavaCard programs [Bec01]. We have extended and adapted that calculus to implement
the approach to handling integer arithmetic based on the retrenchments presented in Sect. 3.1 and 3.3.
Although we strongly recommend using RetrenchKeY and not RetrenchJLS (see the comparison in Sect. 3.4),
the user can configure the KeY prover to use any of the two possibilities. We concentrate on RetrenchKeY

in the following.
Here, we cannot list all rules of the adapted calculus (they can be found in [Sch02]). To illustrate how

the calculus works, we present some typical rules for expressions of type int representing the two different
rule types: program transformation rules to evaluate compound Java expressions (Sect. 4.2.4) and rules to
symbolically execute simple Java expressions (Sect. 4.2.5). Similar rules exist for all arithmetical operators
of the Java types byte, short, and long.

The semantics of the rules is that, if the premisses (the sequent(s) at the top) are valid, then the conclusion
(the sequent at the bottom) is valid. In practice, rules are applied from bottom to top: from the old proof
obligation, new proof obligations are derived.

Sequents are notated following the scheme

φ1, . . . , φm ` ψ1, . . . , ψn ,

which has the same semantics as the formula

(∀x1) · · · (∀xk)((φ1 ∧ . . . ∧ φm) → (ψ1 ∨ . . . ∨ ψn)) ,

where x1, . . . , xk are the free variables of the sequent.

4.2.2. Notation for Rule Schemata

In the following rule schemata, var is a local program variable (of an arithmetical type) whose access cannot
cause side-effects. For expressions that potentially have side-effects (like, e.g., an attribute access that might
cause a NullPointerException) the rules cannot be applied and other rules that evaluate the complex
expression and assign the result to a new local variable have to be applied first. Similarly, se satisfies the
restrictions on var as well or it is an integer literal (whose evaluation is also without side-effects). There is
no restriction on expr, which is an arbitrary Java expression of a primitive integer type (its evaluation may
have side-effects).

The rules of our calculus operate on the first executable statement p of a program π pω. The non-
active prefix π e.g. consists of opening braces “{” and beginnings “try{” of try-catch-finally blocks. The
postfix ω denotes the “rest” of the program, i.e., everything except the non-active prefix and the first active
statement. E.g., if a rule is applied to the Java block “ try{ i=0; j=0; }finally{ k=0; } ”, operating
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Fig. 1. KeY prover window with the proof obligation generated from the example.

on its first active statement “i=0;”, then π is “ try{” and the “rest” ω is “j=0; }finally{ k=0; } ”.
Prefix, active statement, and postfix are automatically highlighted in the KeY prover as shown in Fig. 1.

4.2.3. State Updates

We allow updates of the form {x := t} respectively {o.a := t} to be attached to terms and formulas, where
x is a program variable, o is a term denoting an object with attribute a, and t is a term (which cannot have
side-effects). The intuitive meaning of an update is that the term or formula that it is attached to is to be
evaluated after changing the state accordingly, i.e., {x := t}φ has the same semantics as 〈x = t;〉φ.

4.2.4. Program Transformation Rules

The Rule for Postfix Increment. This rule transforms a postfix increment into a normal Java addition.

Γ ` 〈π var = (T)(var + 1); ω〉φ, ∆

Γ ` 〈π var++; ω〉φ, ∆
(R1)

T is the (declared) type of var. The explicit type cast is necessary to preserve the semantics since the
arguments of + are internally cast to int or long which is not the case for the postfix increment operator ++.

The Rule for Compound Assignment. This rule transforms a statement containing the compound
assignment operator += into a semantically equivalent statement with the simple assignment operator =
(again, T is the declared type of var).

Γ ` 〈π var = (T)(var + expr);ω〉φ, ∆

Γ ` 〈π var += expr;ω〉φ, ∆
(R2)

For the soundness of both (R1) and (R2), it is essential that var does not have side-effects because var
is evaluated twice in the premisses and only once in the conclusions.

4.2.5. Symbolic Execution Rules

The Rule for Subtraction. This rule symbolically executes a subtraction.
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Γ , Range(se1) ∧ Range(se2) ` Range(se1 − se2), ∆

Γ ` {var := se1 − se2}〈π ω〉φ, ∆

Γ ` 〈π var = se1 - se2; ω〉φ, ∆

(R3)

The first premiss establishes the within clause W of the retrenchment RetrenchKeY (see Theorem 4). If both
arguments are within MIN int and MAX int, then the result must be within that range as well (no overflow
occurs).

In the second premiss the Java statement is symbolically executed, i.e. the statement disappears from
the program and is translated into a state update.

Note, that the rule contains two different symbols for subtraction with different semantics: The symbol “-”
denotes the Java operation. It occurs in the conclusion. The symbol “−”, which occurs in the two premisses,
represents the abstract subtraction operation on Z.

4.2.6. Improvements

The calculus presented in Sect. 4.2 generates additional proof obligations for symbolic execution of arith-
metical operations, which ensure that the within clause W holds, i.e. that the range where the Java integers
correctly simulate the mathematical integers is not exceeded. In this section we identify situations where
such an additional proof obligation is not necessary since it can be automatically shown a priori that the
range is not exceeded. In addition, proof re-use can be used to split a proof into two steps as described in
Sect. 3 without duplicating work.

Static Analysis In Java there is no polymorphism for primitive types like int. The type of expressions can
be determined statically. This can be exploited to avoid checking bounds in certain situations. For example,
the Java expressions i+j and i*j cannot exceed the bounds MIN int or MAX int if a, b are of type short
since the whole expression is of type int. Also, constant expressions can be evaluated a priori by static
analysis.

Proof Re-Use In Sect. 2.1 we described how the step from specification to code can be split into two
parts: in a first step, we assume that the Java integers are infinite and prove the correctness relative to that
semantics. Then, in the second step, we use the real Java types and show that they are only used on parts
of the domain where the within clause W holds.

KeY offers two different integer semantics corresponding to the two steps described above. For the first
step we can choose the mathematical semantics and prove the correctness relative to that semantics. If that
succeeds, we then can change the integer semantics to the one from RetrenchKeY and repeat the proof.
However, we do not have to redo all the work. The only difference between the two proofs will be that for
each arithmetical operation an additional proof obligation is generated when using RetrenchKeY . The KeY
prover offers a facility for proof re-use [BK04], which is very helpful in this case. Applying proof re-use, only
the additional goals remain. The other goals are closed automatically by the re-use mechanism since they
are identical to the first proof. The advantage of splitting the two steps is that, if already the first step fails,
the second is not considered before the problem has been fixed.

5. Example

The following extended example illustrates our approach for handling the retrenchment from the infinite
integer type Z to the finite Java programming language type int. We describe the specification, implemen-
tation, and verification of a PIN-check module for an automated teller machine (ATM). Before we give an
informal specification, we describe the scenario of a customer trying to withdraw money.

After inserting the credit card, the user is prompted for his PIN. If the correct PIN is entered, the
customer may withdraw money and gets his credit card back. Otherwise, if the PIN is incorrect, two more
attempts are allowed to enter the correct PIN. When an incorrect PIN has been entered more than two times,
it is still possible to enter more PINs but even if one of these PINs is correct, no money can be withdrawn
and the credit card is retained to prevent misuse.
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class PIN {
private int pin =1234;
private int attempt ;
int input ;

public boolean pinCheck ( ) {
while ( true ) {

input=promptForPIN ( ) ;
i f ( input==pin && attempt >0)

return true ;

attempt=attempt −1;

}
}

}

class PIN {
private int pin =1234;
private int attempt ;
int input ;

public boolean pinCheck ( ) {
while ( true ){

input=promptForPIN ( ) ;
i f ( input==pin && attempt >0)

return true ;

i f ( attempt >0)
attempt=attempt −1;

}
}

}

Fig. 2. Two possible implementations of method pinCheck.

Our PIN-check module contains a Boolean method pinCheck that checks whether the PIN entered is
correct and the number of attempts left is greater than zero. The informal specification of this method is,
that the result value is true only if the PIN entered is correct and the number of attempts left is positive
(it is decreased after unsuccessful attempts).

5.1. Formal Specification and Implementation

The formal specification of the method pinCheck consists of the OCL pre-/ post-conditions

context PIN::pinCheck(input:Integer):Boolean
pre: attempt=3
post: result=true implies input=pin and attempt >0

stating, under the assumption that attempt is equal to three in the pre-state, that input (the PIN entered)
is equal to pin (the correct PIN of the customer) and the number of attempts left is greater than zero if the
return value of pinCheck is true.

The above formal specification is not complete (with respect to the informal specification):4 The relation
between the attribute attempt and the actual number of attempts made to enter the PIN (invocations
of the method promptForPIN) is not specified. The implicit assumption is that the number of attempts
made equals 3 − attempt. As we will see however, this assumption does not hold any more when decreasing
attempt causes (unintended) overflow—leading to undesired results.

First, we consider the possible implementation of the method pinCheck shown on the left in Fig. 2.
Such an implementation may be written by a programmer who does not take overflow into account. This
implementation of pinCheck basically consists of a non-terminating while-loop which can only be left with
the statement “return true;”. In the body of the loop the method promptForPin is invoked. It returns the
PIN entered by the user, which is then assigned to the variable input. In case the entered PIN is equal to
the user’s correct PIN and the number of attempts left is greater than zero, the loop and thus the method
terminates with “return true;”. Otherwise, the variable attempt, counting the attempts left, is decreased
by one.

5.2. Verifying the Implementation

The generation of proof obligations from the formal OCL specification and the implementation yields the
following sequent where the body of method pinCheck in the JavaDL formula is abbreviated with p:

4 In this simple example, the incompleteness of the specification may easily be uncovered but in more complex cases it is not
trivial to check that the formal specification really corresponds to the informal specification.



18 B. Beckert and S. Schlager

attempt = 3 ` 〈p〉(result = true → input = pin ∧ attempt > 0) (S1)

Fig. 1 shows this sequent after “unpacking” the method body of pinCheck in the KeY prover.
With this example we also want to show the advantage of using retrenchment RetrenchKeY and not

RetrenchJLS . Both retrenchments are implemented and the user of the KeY system can configure which of
the two retrenchments he or she wants to use. First, we chose RetrenchJLS and point out problems that
occur when trying to prove the implementation from above. Then, we show how these problems can be
avoided following the KeY approach and using the retrenchment RetrenchKeY .

5.2.1. Verification with RetrenchJLS

If we use the integer retrenchment RetrenchJLS presented in Sect. 3.1, which exactly reflects the Java
semantics, then sequent (S1) is derivable. Consequently, the implementation is correct in the sense that it
satisfies the formal specification.

But this implementation has an unintended behaviour. Suppose the credit card has been stolen and
someone wants to withdraw money without knowing the PIN. Let us assume that there is no other possibility
than a brute force attack, i.e. trying all possible PINs. According to the informal specification, after three
wrong attempts any further attempt should not be successful any more. But with our implementation at
some point the counter attempt will overflow and get the positive value MAX int, i.e. in fact the attacker
has many attempts to guess the right PIN and eventually to withdraw money.

The main reasons for this unexpected behaviour are the incomplete formal specification and the imple-
mentation that is “incidentally” correct (see Sect. 3.2) with respect to the (inadequate) formal specification.

5.2.2. Verification with RetrenchKeY

Now we use the retrenchment RetrenchKeY instead of RetrenchJLS and try to derive sequent (S1) again.
We do not show all the proof steps and the corresponding rules that have to be applied. Rather, we

concentrate on the crucial point in the proof when it comes to handle the statement “attempt=attempt-1;”.
After applying rule (R3), one of the new goals is the following:

Range(attempt), Range(1) ` Range(attempt− 1) .

But the above sequent is neither valid nor derivable, because it is not true in states where attempt has
the value MIN int (in such states the subtraction would cause overflow). The sequent does not hold because
its left side is true but its right side is false (as attempt− 1 is not in valid range). Fig. 3 shows the invalid
sequent in the KeY prover where Range is already expanded.

Note, that this error is uncovered by using a semantics for Java integer arithmetic based on retrenchment
RetrenchKeY . If RetrenchJLS is used instead this error is not detected.

5.3. Revising the Implementation

Since the proof obligation (S1) is not derivable in our calculus when using RetrenchKeY , the implementation
must be revised for being able to prove its correctness. For example, one can add a check whether the value of
attempt is greater than 0 before it is decremented. This results in the implementation depicted on the right
side of Fig. 2. Trying to verify this new implementation with the KeY system leads to the sequent shown
in Fig. 4. In contrast to the one shown in Fig. 3, this sequent is valid because of the additional formula
(self.attempt) > 0 on the left side, which stems from the check added in the revised implementation.

The resulting proof obligation can now be derived in our calculus and, thus, Corollary 1 implies that the
revised implementation satisfies the specification. But we also know that this correctness is not incidental,
which here means that no overflow occurs when the program is executed on the Java virtual machine. With
the improved implementation, it cannot happen that a customer has more than three attempts to enter the
valid PIN and withdraw money since no overflow occurs.

To conclude, the main problem in this example is the inadequate (incomplete) specification, which is
satisfied by the first implementation. Due to unintended overflow, this implementation has a behaviour not
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Fig. 3. The KeY prover window with an invalid sequent.

Fig. 4. The KeY prover window with the sequent from Fig. 3 plus the highlighted premiss that makes the sequent valid.
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intended by the programmer. Following our approach, and using RetrenchKeY , the unintended behaviour is
uncovered and the program cannot be verified until this problem arising from overflow is solved.

As the example in this section shows, our approach can also contribute to detect errors in the specification.
If a program cannot be proved correct due to overflow, it should always be checked whether the specification
is adequate. It may be based on implicit assumptions that should be made explicit.

6. Related Work

Retrenchment was first mentioned in [BP98] as an answer to the problem that refinement is too restrictive
for many practical applications. In [BP99, BJ04] even more general variants of retrenchment are presented,
e.g. output retrenchment.

Research on arithmetic in verification focused so far mainly formalising and verifying properties of
floating-point arithmetic [Har99, Har00] (following the IEEE 754 standard). However, there are good reasons
not to neglect integer arithmetic and in particular integer arithmetic on finite programming language data
types. For example, integer overflow was involved in the notorious Ariane 501 rocket self-destruction, which
resulted from converting a 64-bit floating-point number into a 16-bit signed integer. To avoid such accidents
in the future the ESA inquiry report [ESA96] explicitly recommended to “verify the range of values taken
by any internal or communication variables in the software.”

Approaches to the verification of Java programs that take the finiteness of Java’s integer types into
consideration—but not their relationship to the infinite integer types in specification languages—have been
presented in [Jac03, Ste01].

The verification techniques described in [PHM99, vO01, Hui01] treat Java’s integer types as if they were
infinite, i.e., the overflow problem is ignored.

Closely related to our approach is Chalin’s work [Cha03]. He argues that the semantics of JML’s arithmetic
types (which are finite as in Java) diverges from the user’s intuition. In fact, a high number of published JML
specifications are shown to be inadequate due to that problem. As a solution, Chalin proposes an extension
of JML with an infinite arithmetic type.

7. Conclusions

Developing software systems by stepwise refinement is often not easy and sometimes even impossible. In par-
ticular, the last step from an already refined specification to code often violates the principles of refinement.
One reason is that idealistic data types that are available in specification languages, such as the natural
numbers Z and the real numbers R, are not available in programming languages. Instead, programming
language data types have to be used that are not a correct refinement of the abstract specification language
types. However, the programming language data types are not completely different from the abstract types—
on parts of the domain they even behave as if they were a correct refinement. In this paper we used the
mathematical integers Z on the one hand and the primitive Java type int on the other hand to illustrate
the problems and to describe our approach to overcome the problem.

The idea of “correctness by construction” using refinement has to be adapted when, e.g., replacing Z with
int, and additional proofs become necessary to ensure correctness of the system. We used the retrenchment
framework [BP98] to formally describe the non-refinement steps. The advantage of casting non-refinement
steps into the retrenchment framework is that it becomes explicit where exactly the refinement conditions
are violated and, thus, where correctness cannot be shown once and for all (as it is the case with correct
refinement). Instead, we prove the correctness of a program containing retrenchment by individually verifying
critical situations. After these proofs have been done, no run-time checks are required. The additional proof
obligations are systematically generated from the retrenchment clauses. Case studies showed that most of
the additional proof obligations can be discharged automatically by the KeY system [ABB+05, ABB+00] or
by external decision procedures like CVC [SBD02] and the Simplify tool, which is part of ESC/Java [ESC].
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