
Software Verification with
Integrated Data Type Refinement

for Integer Arithmetic

Bernhard Beckert1 and Steffen Schlager2

1 University of Koblenz-Landau, Institute for Computer Science
D-56072 Koblenz, Germany
beckert@uni-koblenz.de

2 University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany

schlager@ira.uka.de

Abstract. We present an approach to integrating the refinement
relation between infinite integer types (used in specification languages)
and finite integer types (used in programming languages) into software
verification calculi. Since integer types in programming languages
have finite ranges, in general they are not a correct data refinement
of the mathematical integers usually used in specification languages.
Ensuring the correctness of such a refinement requires generating and
verifying additional proof obligations. We tackle this problem consider-
ing Java and UML/OCL as example. We present a sequent calculus
for Java integer arithmetic with integrated generation of refinement
proof obligations. Thus, there is no explicit refinement relation, such
that the arising complications remain (as far as possible) hidden from
the user. Our approach has been implemented as part of the KeY system.

Keywords: Software verification, specification, UML/OCL, data refine-
ment, Java, integer arithmetic.

1 Introduction

The Problem. Almost all specification languages offer infinite data types, which
are not available in programming languages. In particular this holds for the
mathematical integer data type which we will focus on in this paper. Infiniteness
of integer types on the specification level is an important feature of a specification
language for two reasons:1

1. Specifications should be abstract and independent of a concrete implemen-
tation language.

2. Developers think in terms of arithmetic on integers of unrestricted size.
1 For these reasons, Chalin [7] proposes to extend the Java Modeling Language

(JML) [18], which does not support infinite integer types, with a type infint with
infinite range.

E. Boiten, J. Derrick, G. Smith (Eds.): IFM 2004, LNCS 2999, pp. 207–226, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

208 B. Beckert and S. Schlager

In the implementation, the infinite types have to be replaced with finite data
types offered by the programming language. Verifying the correctness of the
implementation requires among other things to show that this replacement does
not cause problems. Speaking in terms of refinement one has to prove that the
finite types are a correct data refinement of the specification language types (in
the particular context where they are used). This is done by generating additional
proof obligations for each arithmetical expression stating that the result does not
exceed the finite range of the type of the expression. By verifying these additional
proof obligations, we establish that the programming language types are only
used to the extent that they indeed are a refinement of the specification language
types. This check cannot be done once and for all but has to be repeated for
each particular program. It is tedious and error-prone if done by hand.

Our Solution. Our solution to the integer data refinement problem is to define a
verification calculus that combines the infinite integer semantics of specification
languages and the finite integer semantics of programming languages. To avoid
“incidentally” correct programs (as defined below), we verify that no overflow2

occurs during the execution of a program, i.e., a pre-condition is added to each
arithmetical operation stating that its result is within the bounds of the Java
data type. That is, we are not content with merely showing that a program
satisfies its specification, which it may do even if an overflow occurs.

To keep all these complications hidden from the user as far as possible, the
relation between the different types of integer semantics is not made explicit
(there is no formal refinement relation). Instead, the handing of the refinement
relation and, in particular, the generation of proof obligations to make sure that
no overflow occurs, is integrated into the rules of the verification calculus.

Our Choice of Specification and Implementation Language. In this paper, we use
Java as implementation language, and the specification language we consider is
UML/OCL.

Note, however, that our particular choice of specification and implementa-
tion languages is not crucial to our approach. The languages UML/OCL and
Java can be substituted by almost any other specification and implementa-
tion languages (e.g. Z [22] or B [1] resp. C++). We use UML/OCL and Java
mainly because the work presented here has been carried out as part of the KeY
project [2,3] (see http://www.key-project.org). The goal of KeY is to enhance
a commercial CASE tool with functionality for formal specification and deduc-
tive verification and, thus, to integrate formal methods into real-world software
development processes. We decided to use UML/OCL as specification language
since the Unified Modeling Language (UML) [19] has been widely accepted as

2 The situation that the result of an arithmetical operation exceeds the maximum or
minimum value of its type is called overflow. In Java, if overflow occurs the result
is computed modulo the size of the data type. For example, MAX int + 1 .= MIN int
(where MAX int and MIN int are the maximum resp. minimum value representable
in type int).

http://www.key-project.org

Software Verification with Integrated Data Type Refinement 209

the standard object-oriented modelling language and is supported by a great
number of CASE tools. The programs that are verified should be written in a
“real” object-oriented programming language. We decided to use Java (actually
KeY only supports the subset JavaCard, but the difference is not relevant for
the topic of this paper).

Motivation for Our Solution. The motivation for our solution is that using the
semantics of Java (as implemented by a Java Virtual Machine) to verify that
a program correctly implements its specification (without checking for overflow)
may still lead to undesired results if the specification is too weak. A formally
correct program may not reflect the intentions of the programmer if overflow
occurs during its execution—even if its observable behaviour satisfies the spec-
ification. Such programs, which we call “incidentally” correct, are a source of
error in the software development process (as explained in Section 2.2). The
problem is aggravated by the fact that Java, as well as many other program-
ming languages like C++ and Pascal, do not indicate overflow in any way (in
some other languages, such as Ada, an exception is thrown). Moreover, many
Java programmers are not aware of this behaviour of Java integers.3 But even
programmers who know about this Java feature make errors related to overflow.
For example, in [6] a flaw arising from unintended overflow in the implementa-
tion of Gemplus’ electronic purse case study [17] is discovered. The result of this
flaw is that the method round which is supposed to return the closest integer,
in fact returns −32768 when invoked with 32767.999.

Dynamic Logic. For the verification component in the KeY system, we use an
instance of Dynamic Logic. This instance, called JavaDL, can be used to specify
and reason about properties of JavaCard programs [4].

Dynamic Logic (DL) is a modal predicate logic with a modality 〈p〉 for every
program p (we allow p to be any sequence of legal Java statements); 〈p〉 refers
to the successor worlds (called states in the DL framework) that are reachable
by running the program p. In standard DL there can be several of these states
(worlds) because the programs can be non-deterministic; but here, since Java
programs without threads are deterministic (so far concurrency is not considered
in the KeY system), there is exactly one such world (if p terminates) or there
is no such world (if p does not terminate). The formula 〈p〉φ expresses that the
program p terminates in a state in which φ holds. A formula ψ → 〈p〉φ is valid if
for every state s satisfying the pre-condition ψ, a run of the program p starting
in s terminates, and in the terminating state the post-condition φ holds.

To prove the correctness of a program, one has to prove the validity of DL
formulas (proof obligations) that are generated from the UML/OCL specification
and the Java implementation. The approach for generating proof obligations
used in the KeY project is described in [5].
3 The claim that many programmes are not aware of the behaviour of Java integers

in case of an overflow is based on the authors’ personal experiences made in teaching
courses for computer science students and conversations with programmers working
in industry.

210 B. Beckert and S. Schlager

Deduction in DL is based on symbolic program execution and simple program
transformations and is, thus, close to a programmer’s understanding of Java.

Related Work. So far, research in this area mainly focused on formalising and
verifying properties of floating-point arithmetic [12,13] (following the IEEE 754
standard). However, there are good reasons not to neglect integer arithmetic and
in particular integer arithmetic on finite programming language data types. For
example, integer overflow was involved in the notorious Ariane 501 rocket self-
destruction, which resulted from converting a 64-bit floating-point number into
a 16-bit signed integer. To avoid such accidents in the future the ESA inquiry
report [9] explicitly recommended to “verify the range of values taken by any
internal or communication variables in the software.”

Approaches to the verification of Java programs that take the finiteness of
Java’s integer types into consideration—but not their relationship to the infinite
integer types in specification languages—have been presented in [16,23].

The verification techniques described in [20,25,15] treat Java’s integer types
as if they were infinite, i.e., the overflow problem is ignored.

In [10], a problem in the JavaCard language specification is pointed out.
Certain JavaCard programs containing integer computations with the un-
signed shift-operator >>> give different results on the Java resp. the JavaCard
platform.

Closely related to our approach is Chalin’s work [7]. He argues that the
semantics of JML’s arithmetic types (which are finite as in Java) diverges from
the user’s intuition. In fact, a high number of published JML specifications are
shown to be inadequate due to that problem. As a solution, Chalin proposes an
extension of JML with an infinite arithmetic type.

Structure of this Paper. The structure of this papers is as follows: After explain-
ing in Section 2 why using only one of the two integer semantics (infinite as in
UML/OCL resp. finite as in Java) is problematic, we explain our approach that
is based on combining both semantics in Section 3. In Section 4, we describe the
sequent calculus for the combined semantics, which has been implemented in the
KeY system. Finally, in Section 5 we give an example for using our approach in
software development.

Due to space restrictions, the proofs of the theorems given in the following
are only sketched, they can be found in [21].

2 Disadvantages of Not Combining Finite and Infinite
Integer Types

In this section we explain the mutual deficiencies of the two integer semantics
when used separately.

Software Verification with Integrated Data Type Refinement 211

2.1 Disadvantages of Using an Infinite Integer Type

A concrete implementation can be regarded as a refinement of a given specifi-
cation where, in particular, the data types used in the specification are refined
by concrete data types available in the implementation language. Following [14],
we say that a (concrete) data type correctly refines an (abstract) data type if in
all circumstances and for all purposes the concrete type can be validly used in
place of the abstract one.

Considering OCL and Java this means that the primitive Java type int
(byte, short, long could be used as well) is used to implement the specifi-
cation type Integer. Obviously, this is not a correct data type refinement in
general. For example, the formula ∀x.x + 1 > x is valid with x of type Inte-
ger but is not valid if the type Integer is replaced with int because it holds
MAX int + 1 .= MIN int and thus MAX int + 1 < MAX int.

In the following, a semantics for JavaDL that treats Java integers as if they
were correct refinements of Integer is called SOCL. This semantics SOCL, where
overflow is totally disregarded, allows to verify programs that do not satisfy the
specification, which is not just a disadvantage but unacceptable.

2.2 Disadvantages of Using a Finite Integer Type

A semantics that uses finite integer types and exactly corresponds to the seman-
tics defined in the Java language specification [11] (and thus to the semantics
implemented by the JVM) is called SJava in the following. Using semantics
SJava, the validity of the JavaDL proof obligations implies that all specified
properties hold during the execution of the program on the JVM. Thus, at first
sight SJava seems to be the right choice. But there are also some drawbacks
which are discussed in the following.

If a program is correct using semantics SJava it shows the expected verified
functional behaviour (black-box behaviour). However, overflow may occur dur-
ing execution leading to a discrepancy between the developer’s intention and the
actual internal (white-box) behaviour of the program. As long as neither specifi-
cation nor implementation are modified this discrepancy has no effect. However,
in an ongoing software development process programs are often modified. Then,
a wrong understanding of the internal program behaviour easily leads to errors
that are hard to find, precisely because the program behaviour is not understood.

For example, using SJava, the formula i > 0 → 〈i=i+1; i=i-1;〉i > 0 is
valid although in case the value of i is MAX int, an overflow occurs and the
value of i is (surprisingly) negative in the intermediate state after the first as-
signment. The program shows the expected black-box behaviour but the white-
box behaviour likely differs from the developer’s intention.

As mentioned in the introduction, we call such programs that satisfy their
specification but lead to (unexpected) overflow during execution “incidentally”
correct, because we assume that the white-box behaviour of the program is not
understood. In our opinion “incidentally” correct programs should be avoided

212 B. Beckert and S. Schlager

because they are a permanent source of error in the ongoing software develop-
ment process.

The above problem does not arise directly from the semantics SJava itself but
rather from the semantic gap between the specification language UML/OCL
and the implementation language Java. Thus, the same problem also occurs
with other specification and implementation languages.

Another disadvantage of SJava is the fact that formulas, that are intuitively
valid in mathematics like ∀x.∃y.y > x are not valid anymore if x, y are of a
built-in Java type, like e.g. int.

Furthermore, using semantics SJava requires to reason about modulo arith-
metic. This is more complicated than reasoning about integers because many
simplification rules known from integer arithmetic cannot be applied to modulo
arithmetic (for example, in modulo arithmetic x+ 1 > x cannot be simplified to
true).

Our experience shows that many proof goals involving integer arithmetics
(that remain after the rules of our JavaDL calculus have been applied to han-
dle the program part of a proof obligation) can be discharged automatically
by decision procedures for arithmetical formulas. In the KeY prover we make
use of freely available implementations of arithmetical decisions procedures, like
the Cooperating Validity Checker [24] and the Simplify tool (which is part of
ESC/Java [8]). Both do not work for modulo arithmetics.

3 Combining Finite and Infinite Integer Types

3.1 The Idea

Basically, there are two possible approaches to proving that a particular Java
program (with finite integer types) correctly refines a particular UML/OCL
specification (with infinite integers types).

Firstly, one can show that the observable behaviour of the program meets
the specification (whether overflow occurs or not), without checking explicitly
that there is any particular relation between the integer types in the program
resp. the specification. This amounts to using semantics SJava, which allows
“incidentally” correct programs.

Secondly, one can show that whenever one of the arithmetical operations4

◦ ∈ {+T , -T , *T , /T , %T } on a type5 T ∈ {int, long} is invoked during the execu-
tion of a program, the following pre-condition is met, ensuring that no overflow
occurs:
4 Here, we do not consider the bit-wise logical and shift operations on integers, i.e.,
˜ (complement), & (and), | (or), ˆ (xor), << (left shift), >> (right shift), >>> (un-
signed right shift). They may cause an overflow effect, but a programmer using
bit-wise logical or shift operators can be assumed to be aware of the data type’s
bit-representation and, thus, of its finiteness.

5 In Java arithmetical operators exist only for the types int and long. Arguments of
type byte or short are automatically cast to int (or to long if one operand is of
type long) by the JVM. This is called promotion.

Software Verification with Integrated Data Type Refinement 213

MIN T ≤ x ◦̂ y ≤ MAX T ,

where ◦̂ is the UML/OCL operation on Integer corresponding to the Java
operation ◦. By checking this pre-condition, we establish that the Java types
are only used to the extent that they indeed are a refinement of the UML/OCL
types. This check cannot be done once and for all but has to be repeated for
each particular Java program.

We use this second approach that truly combines the two types of integer
semantics and avoids “incidentally” correct programs. The generation of proof
obligations corresponding to instances of the above pre-condition is built into
our verification calculus (Section 4).

With our approach to handling Java’s integers, we fulfil the following three
demands:

1. If the proof obligation for the correctness of a program is discharged, then the
program indeed satisfies the specification. That is, the semantics of JavaDL
and our calculus correctly reflect the actual Java semantics.

2. Programs that are merely “incidentally” correct (due to unintended over-
flow) cannot be proved to be correct, i.e., the problem is detected during
verification.

3. Formulas like ∀x.∃y.y > x that are valid over the (infinite) integers (and,
thus, are valid according to the user’s intuition) remain valid in our logic.

3.2 A More Formal View

This section gives a formal definition of our semantics SKeY for the Java integers
that combines the advantages of (finite) Java and (infinite) UML/OCL integer
semantics.

We extend Java by the additional primitive data types

arithByte, arithShort, arithInt, arithLong,

which are called arithmetical types in contrast to the built-in types byte, short,
int, and long. The new arithmetical types have an infinite range. They are,
however, not identical to the mathematical integers (as used in SOCL) because
the semantics of their operators in case of an “overflow” is different (in fact, it
remains unspecified).

Note, that this extension of Java syntax is harmless and does not require
an adaptation of the Java compiler. The additional types are only used during
verification. Once a program is proved correct, they can be replaced with the
corresponding built-in types (Corollary 1 in Section 3.3).

Definition 1. Let p be a program containing arithmetical types. Then the pro-
gram ptransf (p) is the result of replacing in p all occurrences of arithmetical
types with the corresponding built-in Java types.

Theorem 1. If a Java program p is well-typed, then the program ptransf (p) is
well-typed.

214 B. Beckert and S. Schlager

An obvious difference between our semantics SKeY and SOCL resp. SJava is
that the signatures of the underlying programming languages differ, since SKeY
is a semantics for Java with arithmetical types whereas SOCL and SJava are
semantics for standard Java.

Because of their infinite range, not all values of an arithmetical type are
representable in the corresponding built-in type. There are program states6 in
JavaDL with SKeY that do not correspond to any state reachable by the JVM.
In the following, we call such states “unreal”.

Definition 2. A variable or an attribute that has an arithmetical type T is in
valid range (in a certain state) iff its value val satisfies the inequations

MIN T ′ ≤ val and val ≤ MAX T ′ ,

where T ′ is the built-in Java type corresponding to T .

Definition 3. A JavaDL state s is called a real state iff all program variables
and attributes with an arithmetical type are in valid range. Otherwise, s is called
an unreal state.

As already mentioned, both SKeY and SOCL have the same infinite domain.
The crucial difference is in the semantics of the operators: If the values of the
arguments of an operator application in SKeY are in valid range but the (math-
ematical) result is not (i.e., overflow would occur if the arithmetical types were
replaced with the corresponding built-in types), then the result of the operation
is unknown; it remains unspecified. Otherwise, i.e., if the result is in valid range,
it is the same as in SOCL. Technically this is achieved by defining that the re-
sult is calculated in the overflow case by invoking a method overflow(x,y,op)
(the third parameter op is the operator that caused overflow and x,y are the
arguments), whose behaviour remains unspecified (it does not even have to ter-
minate).

The method overflow is not invoked if at least one argument of the operation
is already out of valid range. In that case, the semantics of the operation in our
semantics SKeY is the same as in SOCL. This definition cannot lead to incorrect
program behaviour because the program state before executing the operation is
unreal and cannot be reached in an actual execution of the program.

The main reason for leaving the result of integer operations unspecified in the
overflow case is that no good semantics for the overflow case exists, i.e., there
is no reasonable implementation for the method overflow. In particular, the
following two implementations that seem useful at first have major drawbacks:

– The method overflow throws an exception, does not terminate, or shows
some other sort of “exceptional” behaviour. Then the semantics differs from
the actual Java semantics (where an overflow occurs without an exception

6 A program state assigns values (of the appropriate type) to local program variables,
static fields, and the fields of all existing objects and arrays.

Software Verification with Integrated Data Type Refinement 215

Table 1. Comparison of properties of SOCL, SJava, and SKeY .

Property SOCL SJava SKeY

Underlying programming language Java Java extended Java
Overflow on built-in integer types no yes yes
Overflow on arithmetical types — — no
Range of built-in integer types infinite finite finite
Range of arithmetical types — — infinite
Existence of unreal states yes no yes
Behaviour of programs in DL and on the JVM different equal equal under

certain conditions

being thrown). This leads to the same problem as with semantics SOCL, i.e.,
programs whose actual execution does not satisfy the specification could be
verified to be correct.

– The method overflow calculates the result in the same way as it is done
in Java, including overflow. This leads to the same problem as with se-
mantics SJava, i.e., “incidentally” correct programs could be verified to be
correct.

The instance of SKeY that results from using the latter of the above two im-
plementations for overflow (instead of leaving it unspecified) is very similar
to SJava. In the following, it is therefore called SJava′ . While the problem that
programs may be only “incidentally” correct remains with SJava′ , it has an ad-
vantage over SJava: Using arithmetical types, formulas like ∀x.∃y.y > x are valid
(other differences are discussed later).

Another reason for leaving overflow unspecified is that, if a JavaDL for-
mula φ is derivable in our calculus for JavaDL based on SKeY (i.e. overflow
remains unspecified), then φ is valid for all implementations of overflow (this
follows from the soundness of the calculus). In particular, one can conclude that
(1) φ is valid in semantics SJava′ and (2) the validity of φ is not “incidental”
(due to an overflow).

Example 1. The formula
〈j=i+1;〉j .= i + 1

(where i,j are of an arithmetical type T) is not valid and not provable in our
calculus (because j=i+1 may cause an overflow after which j

.= i + 1 does not
hold).

However, the formula

i > MAX T → 〈j=i+1;〉j .= i + 1

is valid in SKeY and provable in our calculus. As explained above this is rea-
sonable as the premiss i > MAX T is never true during the actual execution of a
Java program.

In SKeY , the semantics of the built-in types byte, short, int, long and the
operators acting on them exactly corresponds to semantics SJava and thus to the

216 B. Beckert and S. Schlager

Table 2. Validity of sample formulas in the different semantics.

SOCL, Z SJava SKeY

arithInt int

Effects of overflow
〈i=MAX int+1;〉i .= MIN int

√ √
〈i=0; while (i>=0) i++;〉true

√ √
∃i.(i > 0 ∧ 〈i=i+1;〉i < 0

√ √
∀i.〈i=i+1;〉i .= i + 1

√
Incidentally correct programs
i > 0 → 〈i=i+1; i=i-1;〉i > 0

√ √ √
∀i.even(i) → 〈i=i+2;〉even(i)

√ √ √
Effects of unreal states
∀i.〈i=i;〉i .= i

√ √ √ √
∀i.(〈j=i+1;〉j .= i + 1)

√
∀i.(i > MAX T → 〈j=i+1;〉j .= i + 1)

√ √ √ √
∀i.(i > MAX T → false)

√ √
Pure first-order formulas
∀i.i + 1 > i

√ √
∀i.∃j.j > i

√ √

definitions in the Java language specification. Hence, using the built-in types,
it is still possible to make use of the effects of overflow by explicitly using the
primitive built-in Java types in both the specification and the implementation.

In Table 1, properties of the combined semantics SKeY are compared to those
of SOCL and SJava.

Table 2 shows in which of the different semantics some sample formulas are
valid. For SKeY , the cases that the program variables i, j are of type arithInt
resp. int are distinguished.

3.3 Properties of the Combined Semantics

In real states, the semantics SJava of the built-in types corresponds to the se-
mantics SJava′ of the arithmetical types. Thus, a program p, whose initial state
is a real state, is equivalent to a program ptransf (p), where the arithmetical
types are replaced with the corresponding built-in types (see Theorem 3).

Corollary 1 summarises the important properties of SKeY . It states that,
if the formula Γ → 〈p〉ψ is valid in SKeY and the program p is started in a
real state s such that s |=SKeY Γ , no overflow occurs during the execution of
the transformed program ptransf (p) on the Java virtual machine, and after the
execution the property ψ holds.

Note, that Corollary 1 does not apply to arbitrary formulas. For example, a
formula of the form [p]true is always derivable, whether overflow occurs during
the execution of p or not. However, the generation of proof obligations for the
correctness of a method typically results in formulas of the form Γ → 〈p〉ψ (Γ
results from the pre-condition, ψ from the post-condition, and p is the imple-
mentation), so this is not a real restriction in practice.

Software Verification with Integrated Data Type Refinement 217

The following theorems show that the differences between the verified pro-
gram p and the actually executed program ptransf (p) do not affect the verified
behaviour of p.

Theorem 2. If |=SKeY φ, then both |=SOCL
φ and |=SJava′ φ.

Definition 4. Let s be a real JavaDL state. The isomorphic state iso(s) to s is
the JVM state in which all state elements (program variables and fields) with an
arithmetical type in s are of the corresponding built-in type and are assigned the
same values as in s.

If s is a real state, the existence of iso(s) is guaranteed, since by definition, in
real states the values of all variables of the arithmetical types are representable
in the corresponding built-in types. In the following theorem, s [[p]]SJava′ s

′ means
that program p, started in state s, terminates in state s′ using semantics SJava′ .

Theorem 3. Let p be a Java program that may contain arithmetical types.
Then, for all real states s and all (arbitrary) states s′: If s [[p]]SJava′ s

′, then
iso(s) [[ptransf (p)]]SJava

iso(s′).

Corollary 1. Let Γ, ψ be pure first-order predicate logic formulas, let p be an
arbitrary Java program that may contain arithmetical types, and let s be an
arbitrary JavaDL state.

If (i) |=SKeY Γ → 〈p〉ψ, (ii) s |=SKeY Γ , and (iii) s is a real state, then, when
the transformed program ptransf (p) is started in iso(s) on the JVM, (a) no
overflow occurs and (b) the execution terminates in a state in which ψ holds.

3.4 Variants of the Combined Semantics

In the definition of semantics SKeY , the method overflow remains unspecified.
By giving a partial specification, i.e., axioms that overflow must satisfy, it is
possible to define variants of SKeY . That way, one can allow certain occurrences
of overflow, namely those which can be shown to be “harmless” using the addi-
tional axioms.

For example, one can define that the method overflow always terminates
or implements an operation that is symmetric w.r.t. its arguments. If an axiom
is added that overflow always terminates, a formula like Γ → 〈p〉true can be
valid, even if overflow occurs during the execution of p, since goals of the form
Γ 	 〈x=overflow(arg1,arg2,op);〉true can immediately be closed using the
information that the invocation of overflow terminates. That is, using such an
axiom all overflow occurrences are defined to be “harmless” in cases where we
are only interested in termination.

As long as the additional axioms are satisfiable by the instances SOCL and
SJava′ of SKeY , Theorem 2 and Theorem 3 still hold.

218 B. Beckert and S. Schlager

3.5 Steps in Software Development

Following our approach, the steps in software development are the following.

1. Specification: In the UML/OCL specification, the OCL type Integer is
used.

2. Implementation: If an operation is specified using Integer, in the imple-
mentation, the arithmetical types arithByte, arithShort, arithInt, or
arithLong are used.

3. Verification: Using our sequent calculus (see Section 4), one has to derive the
proof obligations generated from the specification and implementation using
the translation described in [5]. If all proof obligations are derivable, then
Corollary 1 implies that the program, if the requirements of the corollary are
satisfied and after replacing the arithmetical types with the corresponding
built-in types, satisfies all specified properties during the execution on the
JVM and in particular, no overflow occurs.

4 Sequent Calculus for the Combined Semantics

4.1 Overview

As already explained, the KeY system’s deduction component uses the program
logic JavaDL, which is a version of Dynamic Logic modified to handle JavaCard
programs [4]. We have extended and adapted that calculus to implement our
approach to handling integer arithmetic using the semantics SKeY .

Here, we cannot list all rules of the adapted calculus (they can be found
in [21]). To illustrate how the calculus works, we present some typical rules
representing the two different rule types: program transformation rules to evalu-
ate compound Java expressions (Section 4.4) and rules to symbolically execute
simple Java expressions (Section 4.5).

The semantics of the rules is that, if the premisses (the sequent(s) at the top)
are valid, then the conclusion (the sequent at the bottom) is valid. In practice,
rules are applied from bottom to top: from the old proof obligation, new proof
obligations are derived.

Sequents are notated following the scheme

φ1, . . . , φm 	 ψ1, . . . , ψn ,

which has the same semantics as the formula

(∀x1) · · · (∀xk)((φ1 ∧ . . . ∧ φm) → (ψ1 ∨ . . . ∨ ψn)) ,

where x1, . . . , xk are the free variables of the sequent.

Software Verification with Integrated Data Type Refinement 219

4.2 Notation for Rule Schemata

In the following rule schemata, var is a local program variable (of an arith-
metical type) whose access cannot cause side-effects. For expressions that po-
tentially have side-effects (like, e.g., an attribute access that might cause a
NullPointerException) the rules cannot be applied and other rules that eval-
uate the complex expression and assign the result to a new local variable have
to be applied first. Similarly, simp satisfies the restrictions on var as well or it
is an integer literal (whose evaluation is also without side-effects). There is no
restriction on expr, which is an arbitrary Java expression of a primitive integer
type (its evaluation may have side-effects).

The predicate inT (x) expresses that x is in valid range, i.e.,

inT (x) ≡ MIN T ≤ x ∧ x ≤ MAX T .

The rules of our calculus operate on the first active statement p of a pro-
gram π pω. The non-active prefix π consists of an arbitrary sequence of open-
ing braces “{”, labels, beginnings “try{” of try-catch-finally blocks, and
beginnings “method-frame(. . .){” of method invocation blocks. The prefix is
needed to keep track of the blocks that the (first) active statement is part
of, such that the abruptly terminating statements throw, return, break, and
continue can be handled appropriately. The postfix ω denotes the “rest” of
the program, i.e., everything except the non-active prefix and the part of the
program the rule operates on. For example, if a rule is applied to the Java
block “ l:{try{ i=0; j=0; }finally{ k=0; }} ”, operating on its first active
statement “ i=0; ”, then the non-active prefix π is “ l:{try{ ” and the “rest” ω
is “ j=0; }finally{ k=0; }} ”. Prefix, active statement, and postfix are auto-
matically highlighted in the KeY prover as shown in Figure 1.

Fig. 1. KeY prover window with the proof obligation generated from the example.

220 B. Beckert and S. Schlager

4.3 State Updates

We allow updates of the form {x := t} resp. {o.a := t} to be attached to terms
and formulas, where x is a program variable, o is a term denoting an object
with attribute a, and t is a term (which cannot have side-effects). The intuitive
meaning of an update is that the term or formula that it is attached to is to
be evaluated after changing the state accordingly, i.e., {x := t}φ has the same
semantics as 〈x = t;〉φ.

4.4 Program Transformation Rules

The Rule for Postfix Increment. This rule transforms a postfix increment into a
normal Java addition.

Γ 	 〈π var = (T)(var + 1); ω〉φ, ∆
Γ 	 〈π var++; ω〉φ, ∆

(R1)

T is the (declared) type of var. The explicit type cast is necessary since the ar-
guments of + are promoted to int or long but the postfix increment operator ++
does not involve promotion.

The Rule for Compound Assignment. This rule transforms a statement con-
taining the compound assignment operator += into a semantically equivalent
statement with the simple assignment operator = (again, T is the declared type
of var).

Γ 	 〈π var = (T)(var + expr);ω〉φ, ∆
Γ 	 〈π var += expr;ω〉φ, ∆

(R2)

For the soundness of both (R1) and (R2), it is essential that var does not
have side-effects because var is evaluated twice in the premisses and only once
in the conclusions.

4.5 Symbolic Execution Rules

For the soundness of the following three rules it is important that var and simp
are of an arithmetical type (rules for the built-in types can be found in [21]).

The Rule for Type Cast to an Arithmetical Type. A type cast from the declared
type S of simp to an arithmetical type T causes overflow if the value of simp is
in valid range of S but not in valid range of T (second premiss).

Γ , inS (simp) → inT (simp) 	 {var := simp}〈π ω〉φ, ∆
Γ , inS (simp), ¬inT (simp) 	

〈π var = overflow(simp, "cast(T)"); ω〉φ, ∆
Γ 	 〈π var = (T)simp; ω〉φ, ∆

(R3)

Software Verification with Integrated Data Type Refinement 221

The Rule for Unary Minus. The unary minus operator only causes overflow if
the value of var is equal to MIN T (where T is the promoted type of var).

Γ , ¬simp .= MIN T 	 {var := −simp}〈π ω〉φ, ∆
Γ , simp .= MIN T 	 〈π var = overflow(simp,"-"); ω〉φ, ∆
Γ 	 〈π var = -simp; ω〉φ, ∆

(R4)

The Rule for Subtraction. This rule symbolically executes a subtraction and
checks for possible overflow.

Γ , inT1(simp1) ∧ inT2(simp2) → inT (simp1 − simp2) 	
{var := simp1 − simp2}〈π ω〉φ, ∆

Γ , inT1(simp1), inT2(simp2), ¬inT (simp1 − simp2) 	
〈π var = overflow(simp1,simp2,"-"); ω〉φ, ∆

Γ 	 〈π var = simp1 - simp2; ω〉φ, ∆

(R5)

The first premiss applies in case (1) both arguments and the result are in valid
range (no overflow can occur) and (2) one of the two arguments is not in valid
range (overflow is “allowed” as the initial state is already an unreal state).

The second premiss states that, if the arguments are in valid range but the
result is not, the result of the arithmetical Java operation is calculated by the
unspecified method overflow.

5 Extended Example

In this example we describe the specification, implementation, and verification of
a PIN-check module for an automated teller machine (ATM). Before we give an
informal specification, we describe the scenario of a customer trying to withdraw
money.

After inserting the credit card, the user is prompted for his PIN. If the correct
PIN is entered, the customer may withdraw money and then gets the credit card
back. Otherwise, if the PIN is incorrect, two more attempts are left to enter the
correct PIN. When an incorrect PIN has been entered more than two times, it
is still possible to enter more PINs but even if one of these PINs is correct, no
money can be withdrawn and the credit card is retained to prevent misuse.

Our PIN-check module contains a boolean method pinCheck that checks
whether the PIN entered is correct and the number of attempts left is greater
than zero. The informal specification of this method is, that the result value
is true only if the PIN entered is correct and the number of attempts left is
positive (it is decreased after unsuccessful attempts).

The formal specification of the method pinCheck consists of the OCL pre-/
post-conditions

222 B. Beckert and S. Schlager

context PIN::pinCheck(input:Integer):Boolean
pre: attempt=3
post: result=true implies input=pin and attempt>0

stating, under the assumption that attempt is equal to three in the pre-state,
that input (the PIN entered) is equal to pin (the correct PIN of the customer)
and the number of attempts left is greater than zero if the return value of
pinCheck is true.

In this example the above formal specification is not complete (with respect
to the informal specification):7 The relation between the attribute attempt and
the actual number of attempts made to enter the PIN (invocations of the method
promptForPIN) is not specified. The implicit assumption is that the number of
attempts made equals 3 − attempt. As we will see however, this assumption does
not hold any more when decreasing attempt causes (unintended) overflow—
leading to undesired results.

Without our additional arithmetical types, a possible implementation of the
method pinCheck is the one shown on the left in Figure 2. Such an implementa-
tion may be written by a programmer who does not take overflow into account.
This implementation of pinCheck basically consists of a non-terminating while-
loop which can only be left with the statement “return true;”. In the body
of the loop the method promptForPin is invoked. It returns the PIN entered by
the user, which is then assigned to the variable input. In case the entered PIN is
equal to the user’s correct PIN and the number of attempts left is greater than
zero, the loop and thus the method terminates with “return true;”. Otherwise,
the variable attempt, counting the attempts left, is decreased by one.

The generation of proof obligations from the formal OCL specification and
the implementation yields the following JavaDL formula, where the body of
method pinCheck is abbreviated with p:

attempt
.= 3 	 〈p〉(result .= true → input

.= pin ∧ attempt > 0)

Figure 1 shows this sequent after “unpacking” the method body of pinCheck
in the KeY prover. This sequent is derivable in our calculus. Therefore, due to
the correctness of the rules, it is valid in SKeY and, thus, in particular in SJava.
Consequently, the implementation can be said to be correct in the sense that it
satisfies the specification.

But this implementation has an unintended behaviour. Suppose the credit
card has been stolen and the thief wants to withdraw money but does not know
the correct PIN. Thus, he has to try all possible PINs. According to the informal
specification, after three wrong attempts any further attempt should not be
successful any more. But if the thief does not give up, at some point the counter
attempt will overflow and get the positive value MAX int. Then, the thief has
many attempts to enter the correct PIN and thus, to withdraw money.
7 In this simple example, the incompleteness of the specification may easily be uncov-

ered but in more complex cases it is not trivial to check that the formal specification
really corresponds to the informal specification.

Software Verification with Integrated Data Type Refinement 223

class PIN {
private int pin=1234;
private int attempt;
int input;

public boolean pinCheck() {
while (true) {
input=promptForPIN();
if (input==pin && attempt>0)
return true;

attempt=attempt-1;

}
}

}

class PIN {
private int pin=1234;
private arithInt attempt;
int input;

public boolean pinCheck() {
while (true){
input=promptForPIN();
if (input==pin && attempt>0)
return true;

if (attempt>0)
attempt=attempt-1;

}
}

}

Fig. 2. Implementation of method pinCheck without (left) and with (right) using the
additional arithmetical type arithInt.

The main reasons for this unexpected behaviour are the incomplete formal
specification and the implementation that is “incidentally” correct w.r.t. the
formal specification. In the following, we demonstrate that this unintended be-
haviour of the program can be detected following our approach.

In the implementation, we now use the arithmetical type arithInt for the
variable attempt instead of the built-in type int. This results in a proof obliga-
tion similar to the one above. The only difference is that the variable attempt
in the body of the method is now of type arithInt instead of int.

We do not show single proof steps and the corresponding rules that have to
be applied. However, the crucial point in the proof is when it comes to handle
the statement “attempt=attempt-1;”. After applying rule (R5) one of the new
goals is the following:

in int(attempt), in int(1), ¬in int(attempt − 1) 	
〈attempt = overflow(attempt,1,"-");〉φ.

Since nothing is known about overflow, the only way to derive this in our
JavaDL calculus is to prove—as a lemma or sub-goal—that no overflow occurs
(and, thus, overflow is not invoked). Thus, one has to derive

in int(attempt), in int(1), ¬in int(attempt − 1) 	 false

or equivalently

in int(attempt), in int(1) 	 in int(attempt − 1) .

But the above sequent is neither valid nor derivable, because it is not true in
states where attempt has the value MIN int. In such states the subtraction

224 B. Beckert and S. Schlager

causes overflow and the sequent does not hold because its left side is true but its
right side is false (as attempt − 1 is not in valid range). The left part of Figure 3
shows the invalid sequent in the KeY prover.

Fig. 3. The KeY prover window on the left shows an invalid sequent. The prover
window on the right shows the same sequent with the additional highlighted premiss
that makes the sequent valid.

Note, that this error is uncovered by using our additional arithmetical types
and our semantics SKeY . If the built-in type int is used in the implementation,
the error is not detected.

Since the proof obligation is not derivable in our calculus, one has to cor-
rect the implementation to be able to prove its correctness. For example, one
can add a check whether the value of attempt is greater than 0 before it is
decremented. This results in the implementation depicted on the right side in
Figure 2. Trying to verify this new implementation with the KeY system leads to
the sequent shown in the right part of Figure 3. In contrast to the one shown in
the left part of Figure 3, this sequent is valid because of the additional formula
(self.attempt) > 0 on the left side, which stems from the added check in the
revised implementation.

The resulting proof obligation can now be derived in our calculus and, thus,
Corollary 1 implies that no overflow occurs if the type arithInt is replaced
with int in order to execute the program on the Java virtual machine. With
the improved implementation, it cannot happen that a customer has more than
three attempts to enter the valid PIN and withdraw money since no overflow
occurs.

To conclude, the main problem in this example is the inadequate (incomplete)
specification, which is satisfied by the first implementation. Due to unintended
overflow, this implementation has a behaviour not intended by the programmer.
Following our approach, the unintended behaviour is uncovered and the program
cannot be verified until this problem arising from overflow is solved.

As the example in this section shows, our approach can also contribute to
detect errors in the specification. Thus, if a program containing arithmetical

Software Verification with Integrated Data Type Refinement 225

types cannot be verified due to overflow, it should always be checked whether
the specification is adequate (it may be based on implicit assumptions that
should be made explicit).

6 Conclusion

We have presented a method for handling the data refinement relation between
infinite and finite integer types. The main design goals of our approach are:

– “incidentally” correct programs are avoided by ensuring that no overflow
occurs,

– the handling of the refinement relation is integrated into the verification
calculus and, thus, hidden from the user as far as possible,

– the semantics combining both finite and infinite Java types provides a well-
defined theoretical basis for our approach.

Acknowledgement. We thank R. Bubel, A. Roth, P. H. Schmitt, and the
anonymous referees for important feedback on drafts of the paper.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY Tool. Software
and System Modeling, pages 1–42, 2004. To appear.

3. W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel,
and P. H. Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In M. Ojeda-Aciego, I. P. de Guzman, G. Brewka, and L. M.
Pereira, editors, Proceedings, Logics in Artificial Intelligence (JELIA), Malaga,
Spain, LNCS 1919. Springer, 2000.

4. B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Security.
Revised Papers, Java Card 2000, International Workshop, Cannes, France, LNCS
2041, pages 6–24. Springer, 2001.

5. B. Beckert, U. Keller, and P. H. Schmitt. Translating the Object Constraint
Language into first-order predicate logic. In Proceedings, VERIFY, Workshop at
Federated Logic Conferences (FLoC), Copenhagen, Denmark, 2002. Available at:
http://www.key-project.org/doc/2002/BeckertKellerSchmitt02.ps.gz.

6. N. Cataño and M. Huisman. Formal specification and static checking of Gemplus’
electronic purse using ESC/Java. In L.-H. Eriksson and P. A. Lindsay, editors, Pro-
ceedings, FME 2002: Formal Methods - Getting IT Right, Copenhagen, Denmark,
LNCS 2391, pages 272–289. Springer, 2002.

7. P. Chalin. Improving JML: For a Safer and More Effective Language. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, Proceedings, FME 2003: Formal Methods,
Pisa, Italy, LNCS 2805, pages 440–461. Springer, 2003.

http://www.key-project.org/doc/2002/BeckertKellerSchmitt02.ps.gz

226 B. Beckert and S. Schlager

8. ESC/Java (Extended Static Checking for Java).
http://research.compaq.com/SRC/esc/.

9. European Space Agency. Ariane 501 inquiry board report, July 1996. Available
at: http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf.

10. S. Glesner. Java Card Integer Arithmetic: About an Inconsistency and Its Algebraic
Reason, 2004. Draft.

11. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison Wesley, 2nd edition, 2000.

12. J. Harrison. A machine-checked theory of floating point arithmetic. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Proceedings, Theorem
Proving in Higher Order Logics (TPHOLs), Nice, France, LNCS 1690, pages 113–
130. Springer, 1999.

13. J. Harrison. Formal verification of IA-64 division algorithms. In M. Aagaard
and J. Harrison, editors, Proceedings, Theorem Proving in Higher Order Logics
(TPHOLs), LNCS 1869, pages 234–251. Springer, 2000.

14. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In B. Robinet
and R. Wilhelm, editors, European Symposium on Programming, volume LNCS
213, pages 187–196. Springer, 1986.

15. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, The Netherlands, 2001.

16. B. Jacobs. Java’s Integral Types in PVS. In E. Najim, U. Nestmann, and
P. Stevens, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2003), volume 2884 of LNCS, pages 1–15. Springer, 2003.

17. A. B. Kit. Available at:
http://www.gemplus.com/smart/r_d/publications/case-study/.

18. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A Notation for Detailed Design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer, 1999.

19. Object Management Group, Inc., Framingham/MA, USA, www.omg.org. OMG
Unified Modeling Language Specification, Version 1.3, June 1999.

20. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential java.
In S. D. Swierstra, editor, Proceedings, European Symposium on Programming
(ESOP), Amsterdam, The Netherlands, LNCS 1576, 1999.

21. S. Schlager. Handling of Integer Arithmetic in the Verification of Java
Programs. Master’s thesis, Universität Karlsruhe, 2002. Available at:
http://www.key-project.org/doc/2002/DA-Schlager.ps.gz.

22. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

23. K. Stenzel. Verification of JavaCard Programs. Technical report 2001-5, In-
stitut für Informatik, Universität Augsburg, Germany, 2001. Available at:
http://www.informatik.uni-augsburg.de/swt/fmg/papers/.

24. A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating Validity Checker. In
E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer
Aided Verification (CAV), volume 2404 of Lecture Notes in Computer Science,
pages 500–504. Springer-Verlag, 2002. Copenhagen, Denmark.

25. D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München, 2001.

http://research.compaq.com/SRC/esc/
http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf
http://www.gemplus.com/smart/r_d/publications/case-study/
http://www.key-project.org/doc/2002/DA-Schlager.ps.gz
http://www.informatik.uni-augsburg.de/swt/fmg/papers/

	Introduction
	Disadvantages of Not Combining Finite and Infinite Integer Types
	Disadvantages of Using an Infinite Integer Type
	Disadvantages of Using a Finite Integer Type

	Combining Finite and Infinite Integer Types
	The Idea
	A More Formal View
	Properties of the Combined Semantics
	Variants of the Combined Semantics
	Steps in Software Development

	Sequent Calculus for the Combined Semantics
	Overview
	Notation for Rule Schemata
	State Updates
	Program Transformation Rules
	Symbolic Execution Rules

	Extended Example
	Conclusion

