
A Sequent Calculus for First-Order Dynamic
Logic with Trace Modalities

Bernhard Beckert and Steffen Schlager

University of Karlsruhe
Institute for Logic, Complexity and Deduction Systems

D-76128 Karlsruhe, Germany
beckert@ira.uka.de, schlager@ira.uka.de

Abstract. The modalities of Dynamic Logic refer to the final state of
a program execution and allow to specify programs with pre- and post-
conditions. In this paper, we extend Dynamic Logic with additional trace
modalities “throughout” and “at least once”, which refer to all the states
a program reaches. They allow one to specify and verify invariants and
safety constraints that have to be valid throughout the execution of a
program. We give a sound and (relatively) complete sequent calculus for
this extended Dynamic Logic.

1 Introduction

We present a sequent calculus for an extended version of Dynamic Logic (DL)
that has additional modalities “throughout” and “at least once” referring to the
intermediate states of program execution.

Dynamic Logic [10,5,9,6] can be seen as an extension of Hoare logic [2]. It
is a first-order modal logic with modalities [α] and 〈α〉 for every program α.
These modalities refer to the worlds (called states in the DL framework) in
which the program α terminates when started in the current world. The for-
mula [α]φ expresses that φ holds in all final states of α, and 〈α〉φ expresses
that φ holds in some final state of α. In versions of DL with a non-deterministic
programming language there can be several such final states (worlds). Here we
consider a Deterministic Dynamic Logic (DDL) with a deterministic while pro-
gramming language [4,7]. For deterministic programs there is exactly one final
world (if α terminates) or there is no final world (if α does not terminate). The
formula φ→ 〈α〉ψ is valid if, for every state s satisfying pre-condition φ, a run
of the program α starting in s terminates, and in the terminating state the
post-condition ψ holds. The formula φ→ [α]ψ expresses the same, except that
termination of α is not required, i.e., ψ only has to hold if α terminates.

Thus, φ→ [α]ψ is similar to the Hoare triple {φ}α{ψ}. But in contrast to
Hoare logic, the set of formulas of DL is closed under the usual logical operators.
In Hoare logic, the formulas φ and ψ are pure first-order formulas, whereas in
DL they can contain programs. That is, DL allows one to involve programs in
the formalisation of pre- and post-conditions. The advantage of using programs

R. Goré, A. Leitsch, and T. Nipkow (Eds.): IJCAR 2001, LNAI 2083, pp. 626–641, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 627

is that one can easily specify, for example, that some data structure is not cyclic,
which is impossible in pure first-order logic.

In some regard, however, standard DL (and DDL) still lacks expressivity:
The semantics of a program is a relation between states; formulas can only
describe the input/output behaviour of programs. Standard DL cannot be used
to reason about program behaviour not manifested in the input/output relation.
It is inadequate for reasoning about non-terminating programs and for verifying
invariants or constraints that must be valid throughout program execution.

We overcome this deficiency and increase the expressivity of DDL by adding
two new modalities [[α]] (“throughout”) and 〈〈α〉〉 (“at least once”). In the ex-
tended logic, which we call (Deterministic) Dynamic Logic with Trace Modali-
ties (DLT), the semantics of a program is the sequence of all states its execution
passes through when started in the current state (its trace). It is possible in
DLT to specify properties of the intermediate states of terminating and non-
terminating programs. And such properties (typically safety constraints) can be
verified using the calculus presented in Section 4. This is of great importance as
safety constraints occur in many application domains of program verification.

Previous work in this area includes Pratt’s Process Logic [10,11], which is
an extension of propositional DL with trace modalities (DLT can be seen as
a first-order Process Logic). Also, Temporal Logics have modalities that allow
one to talk about intermediate states. There, however, the program is fixed and
considered to be part of the structure over which the formulas are interpreted.
Temporal Logics, thus, do not have the compositionality of Dynamic Logics.

The calculus for DDL described in [7] (which is based on the one given in [4])
has been implemented in the software verification systems KIV [12] and VSE [8].
It has successfully been used to verify software systems of considerable size.

The work reported here has been carried out as part of the KeY project [1].1

The goal of KeY is to enhance a commercial CASE tool with functionality for
formal specification and deductive verification and, thus, to integrate formal
methods into real-world software development processes. In the KeY project, a
version of DL for the JavaCard programming language [3] is used for verifica-
tion. Deduction in DL (and DLT) is based on symbolic program execution and
simple program transformations and is, thus, close to a programmer’s under-
standing of a program’s semantics. Our motivation for considering trace modal-
ities was that in typical real-world specifications as they are done with the help
of CASE tools, there are often program parts for which invariants and safety
constraints are given, but for which the user did not bother to give a full speci-
fication with pre- and post-conditions.

We define the syntax of DLT in Section 2 and its semantics in Section 3. In
Section 4, we describe our sequent calculus for DLT. Theorems stating soundness
and (relative) completeness are presented in Section 5 (due to space restrictions,
the proofs are only sketched, they can be found in [13]). In Section 6, we give
an example for verifying that a non-terminating program preserves a certain
invariant. Finally, in Section 7, we discuss future work.

1 More information on KeY can be found at i12www.ira.uka.de/˜key.

628 B. Beckert and S. Schlager

2 Syntax of DL with Trace Modalities

In first-order DL, states are not abstract points (as in propositional DL) but
valuations of variables. Atomic programs are assignments of the form x := t.
Executing x := t changes the program state by assigning the value of the term t
to the variable x. The value of a term t depends on the current state s (namely
the value that s gives to the variables occurring in t). The function symbols are
interpreted using a fixed first-order structure. This domain of computation, over
which quantification is allowed, can be considered to define the data structures
used in the programs. The logic DLT as well as the calculus presented in Section 4
are basically independent of the domain actually used. The only restriction is
that the domain must be sufficiently expressive. In the following, for the sake
of simplicity, we use arithmetic as the single domain. In practice, there will
be additional function and predicate symbols and different types of variables
ranging over different sorts of a many-sorted domain (different data structures).

The arithmetic signature ΣN contains (a) the constant 0 (zero) and the unary
function symbol s (successor) as constructors (in the following we abbreviate
terms of the form s(· · · s(0) · · ·) with their decimal representation, e.g. “2” ab-
breviates “s(s(0))”), (b) the binary function symbols + (addition) and ∗ (mul-
tiplication), and (c) the binary predicate symbols ≤ (less or equal than) and
.= (equality). In addition, there is an infinite set Var of object variables, which
are also used as program variables. The set TermN of terms over ΣN is built as
usual in first-order predicate logic from the variables in Var and the function
symbols in ΣN. The formulas of first-order predicate logic without modal opera-
tors (FOL-formulas) over ΣN are constructed as usual from the terms in TermN

and the predicate symbols in ΣN, using the classical connectives ∧ (conjunction),
∨ (disjunction),→ (implication), and ¬ (negation), and the quantifiers ∀ and ∃.

We proceed to define what the programs of the deterministic programming
language of DDL and DLT are. The programming constructs for forming complex
programs from the atomic assignments are the concatenation of programs, if-
then-else conditionals, and while loops (the two latter program constructs use
quantifier-free FOL-formulas as conditions).

Definition 1. The programs of DLT are recursively defined by: (i) If x ∈ Var
and t ∈ TermN, then x := t is a program (assignment). (ii) If α and β are
programs, then α;β is a program (concatenation). (iii) If α and β are programs
and ε is a quantifier-free FOL-formula, then if ε then α else β is a program
(conditional). (iv) If α is a program and ε is a quantifier-free FOL-formula, then
while ε do α is a program (loop).

The programs of DLT form a computationally complete programming lan-
guage. For every partial recursive function f : N→ N there is a program αf (x)
that computes f , i.e., if αf (x) is started in an arbitrary state in which the value
of x is some n ∈ N, then it terminates in a state in which the value of x is f(n).

Now, we define the formulas of DLT. Note, that the first four conditions in
Definition 2 are the same as in the definition of FOL-formulas. Only the last
condition is new, which adds the modalities (and programs) to the formulas.

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 629

Definition 2. The set of DLT-formulas is recursively defined by: (i) true and
false are DLT-formulas. (ii) If t1, t2 ∈ TermN, then t1 ≤ t2 and t1

.= t2 are DLT-
formulas. (iii) If φ, ψ are DLT-formulas, then so are ¬φ, φ ∨ ψ, φ ∧ ψ, and
φ→ ψ. (iv) If φ is a DLT-formula and x ∈ Var, then ∃xφ, ∀xφ are DLT-
formulas. (v) If φ is a DLT-formula and α is a program (Def. 1), then [α]φ,
〈α〉φ, [[α]]φ, and 〈〈α〉〉φ are DLT-formulas.

Definition 3. A sequent is of the form φ1, . . . , φm ` ψ1, . . . , ψn (m,n ≥ 0),
where the φi and ψj are DLT-formulas. The order of the φi resp. the ψj is
irrelevant, i.e., φ1, . . . , φm and ψ1, . . . , ψn are treated as multi-sets.

Definition 4. A variable x ∈ Var is bound in a DLT-formula φ if it occurs
inside the scope of (i) a quantification ∀x resp. ∃x, or (ii) a modality [α], 〈α〉,
[[α]], or 〈〈α〉〉 containing an assignment x := t. The variable x is free in φ if there
is an occurrence of x in φ that is neither bound by a quantifier nor a modality.

Definition 5. A substitution assigns to each object variable in Var a term in
TermN. A substitution σ is applied to a DLT-formula φ by replacing all free
occurrences of variables x in φ by σ(x).

If a substitution {x/t} instantiates only a single variable x, its application to
a formula φ or a formula multi-set Γ is denoted by φtx resp. Γ tx.

A substitution σ is admissible w.r.t. a DLT-formula φ if there are no variables
x and y such that x is free in φ, y occurs in σ(x), and, after replacing σ(x) for
some free occurrence of x in φ, the occurrence of y in σ(x) is bound in σ(φ).

3 Semantics of DL with Trace Modalities

Since we use arithmetic as the only domain of computation, the semantics of DLT
is defined using a single fixed model, namely 〈N, IN〉. It consists of the universe N

of natural numbers and the canonical interpretation function IN assigning the
function and predicate symbols of ΣN their natural meaning in arithmetic.

The states (worlds) of the model (only) differ in the value assigned to the
object variables. Therefore, the states can be defined to be variable assignments.

Definition 6. A state s assigns to each variable x ∈ Var a number s(x) ∈ N.
Let x ∈ Var and n ∈ N; then s′ = s{x← n} is the state that is identical to s

except that x is assigned n, i.e., s′(x) = n and s′(y) = s(y) for all x 6= y.

The truth value of DLT-formulas in a state s is given by a valuation function
vals that assigns to each term t ∈ TermN a natural number vals(t) ∈ N and to
each formula one of the truth values t and f. This function is defined step by step.
For variables x ∈ Var , it is defined by vals(x) = s(x). It is extended to terms and
FOL-formulas as usual in first-order predicate logic (note, that the way in which
function symbols are interpreted depends on the interpretation function of the

630 B. Beckert and S. Schlager

domain of computation, which in our case is IN). Below, we describe how vals is
defined for programs (Def. 7) and, finally, is extended to DLT-formulas (Def. 8).

In DDL, where the modalities only refer to the final state of a program
execution, the semantics of a program α is a reachability relation on states: A
state s′ is α-reachable from s if α terminates in s′ when started in s. In DLT the
situation is different. The additional modalities refer to the intermediate states
as well. Since the programs are deterministic, their intermediate states form a
sequence. Thus, the semantics of a program α w.r.t. a state s is the—finite or
infinite—sequence of all states that α reaches when started in s, called the trace
of α. It includes the initial state s (and the final state in case α terminates).

Definition 7. A trace is a non-empty, finite or infinite sequence of states.
The last element of a finite trace T is denoted with last(T).
The concatenation of traces T1 and T2 is defined by: T1 ◦ T2 = T1 if T1 is

infinite, and T1 ◦ T2 = (s11, . . . , s
1
k, s

2
2, s

2
3, . . .) if T1 = (s11, . . . , s

1
k) is finite and

T2 = (s21, s
2
2, s

2
3, . . .) (the first state of T2 is omitted in the concatenation).

Given a state s, the valuation function vals assigns a trace to each program
as follows:
– vals(x := t) = (s, s{x← vals(t)}).
– vals(α;β) = vals(α) ◦ vallast(vals(α))(β).
– vals(if ε then α else β) is defined to be equal to vals(α) if vals(ε) = t and

to be equal to vals(β) if vals(ε) = f.
– vals(while ε do α) is defined as follows (there are three cases). Let sn be the

initial state of the n-th iteration of the loop body α, i.e., s1 = s and, for n ≥ 1,
sn+1 = last(valsn

(α)) if sn is defined and valsn
(α) is finite (otherwise sn+1

remains undefined).
Case 1 (the loop terminates): If for some n ∈ N, (i) valsi(α) is finite for all
i ≤ n, (ii) valsi

(ε) = t for all i ≤ n, and (iii) valsn+1(ε) = f, then we define
vals(while ε do α) to be the finite sequence vals1(α) ◦ · · · ◦ valsn

(α).
Case 2 (each iteration terminates but the condition ε remains true such that
the loop does not terminate): If for all n ≥ 1, (i) valsn(α) is finite and
(ii) valsn(ε) = t, then we define vals(while ε do α) to be the infinite sequence
vals1(α) ◦ vals2(α) ◦ · · · .
Case 3 (some iteration does not terminate): If for some n ∈ N, (i) valsi

(α)
is finite for i < n, (ii) valsn(α) is infinite, and (iii) valsi(ε) = t for all i ≤ n,
then vals(while ε do α) is the infinite sequence vals1(α) ◦ · · · ◦ valsn(α).

Definition 8. Given a state s, the valuation function vals assigns to a DLT-
formula φ one of the truth values t and f as follows: (i) If φ is true, false, or an
atomic formula, or its principal logical operator is one of the classical operators
∧, ∨, →, ¬, or one of the quantifiers ∀, ∃, then vals(φ) is recursively defined
as usual in first-order predicate logic. (ii) vals([α]φ) = t iff vals(α) is infinite
or vals′(φ) = t where s′ = last(vals(α)). (iii) vals(〈α〉φ) = t iff vals(α) is finite
and vals′(φ) = t where s′ = last(vals(α)). (iv) vals([[α]]φ) = t iff vals′(φ) = t for
all s′ ∈ vals(α). (v) vals(〈〈α〉〉φ) = t iff vals′(φ) = t for at least one s′ ∈ vals(α).

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 631

Table 1. The elementary rules of the calculus.

Axioms
Γ, φ ` φ, ∆

(R1)
Γ ` true, ∆ (R2)

Γ, false ` ∆
(R3)

Rules for classical logical operators and quantifiers
Γ, φ ` ∆
Γ ` ¬φ, ∆ (R4)

Γ ` φ, ∆
Γ, ¬φ ` ∆

(R5)
Γ ` φ, ∆ Γ ` ψ, ∆

Γ ` φ ∧ ψ, ∆
(R6)

Γ, φ, ψ ` ∆
Γ, φ ∧ ψ ` ∆

(R7)
Γ ` φ, ψ, ∆
Γ ` φ ∨ ψ, ∆

(R8)
Γ, φ ` ∆ Γ, ψ ` ∆

Γ, φ ∨ ψ ` ∆
(R9)

Γ, φ ` ψ, ∆
Γ ` φ → ψ, ∆

(R10)
Γ ` φ, ∆ Γ, ψ ` ∆

Γ, φ → ψ ` ∆
(R11)

Γ ` φx′
x , ∆

Γ ` ∀xφ, ∆
x′ is new w.r.t. φ, Γ,∆

(R12)

Γ, ∀xφ, φt
x ` ∆

Γ, ∀xφ ` ∆

where {x/t} is
admissible w.r.t. φ

(R13)
Γ, φx′

x ` ∆

Γ, ∃xφ ` ∆

x′ is new
w.r.t. φ, Γ,∆

(R14)
Γ ` φt

x, ∃xφ, ∆
Γ ` ∃xφ, ∆
where {x/t} is

admissible w.r.t. φ

(R15)

Weakening and Cut
Γ ` ∆

Γ ` φ, ∆
(R16) Γ ` ∆

Γ, φ ` ∆
(R17)

Γ, φ ` ∆ Γ ` φ, ∆
Γ ` ∆

(R18)

Definition 9. If vals(φ) = t, then φ is said to be true in the state s; otherwise
it is false in s. A formula is valid if it is true in all states.

A sequent Γ ` ∆ is valid iff the DLT-formula
∧
Γ → ∨

∆ is valid.

4 A Sequent Calculus for DL with Trace Modalities

In this section, we present a sequent calculus for DLT, which we call CDLT. It
is sound and relatively complete, i.e., complete up to the handling of arithmetic
(see Section 5). The set of those CDLT-rules in which the additional modalities
[[·]] and 〈〈·〉〉 do not occur forms a sound and (relatively) complete calculus for
DDL. This restriction of CDLT is similar to the DDL-calculus described in [7].

Most rules of the calculus are analytic and therefore could be applied auto-
matically. The rules that require user interaction are: (a) the rules for handling
while loops (where a loop invariant has to be provided), (b) the induction rule
(where a useful induction hypothesis has to be found), (c) the cut rule (where
the right case distinction has to be used), and (d) the quantifier rules (where the
right instantiation has to be found).

In the rule schemata, Γ,∆ denote arbitrary, possibly empty multi-sets of
formulas, and φ, ψ denote arbitrary formulas. As usual, the sequents above the
horizontal line in a schema are its premisses and the single sequent below the
horizontal line is its conclusion. Note, however, that in practice the rules are
applied from bottom to top. Proof construction starts with the original proof

632 B. Beckert and S. Schlager

Table 2. The rules for handling arithmetic.

Oracle rules
Γ ` ∆

where
∧
Γ → ∨

∆ is a
valid arithmetical FOL-formula

(R19)
Γ ′

1, Γ2 ` ∆

Γ1, Γ2 ` ∆

where
∧
Γ1 → ∧

Γ ′
1 is a

valid arithmetical FOL-formula

(R20)

Induction Γ ` φ(0), ∆ Γ, φ(n) ` φ(s(n)), ∆
Γ ` ∀nφ(n), ∆

where n does not occur in Γ,∆

(R21)

obligation at the bottom. Therefore, if a constraint is attached to a rule that
requires a variable to be “new”, it has to be new w.r.t. the conclusion.

Definition 10. The calculus CDLT consists of the rules (R1) to (R51) shown in
Tables 1–4. A sequent is derivable (with CDLT) if it is an instance of the conclu-
sion of a rule schema and all corresponding instances of the premisses of that rule
schema are derivable sequents. In particular, all sequents are derivable that are
instances of the conclusion of a rule that has no premisses (R1, R2, R3, R19).

The Elementary Rules. The elementary rules of CDLT are shown in Table 1.
The table contains rules for axioms (which have no premisses and make it pos-
sible to close a branch in the proof tree), rules for the propositional operators
and the quantifiers, weakening rules, and the cut rule. These rules form a sound
and complete calculus for first-order predicate logic.

Rules for Handling Arithmetic. Our calculus is basically independent of
the domain of computation resp. data structures that are used. We therefore
abstract from the problem of handling the data structure(s) and just assume
that an oracle is available that can decide the validity of FOL-formulas in the
domain of computation (note that the oracle only decides pure FOL-formulas).
In the case of arithmetic, the oracle is represented by rule (R19) in Table 2.
Rule (R20) is an alternative formalisation of the oracle that is often more useful.

Of course, the FOL-formulas that are valid in arithmetic are not even enu-
merable. Therefore, in practice, the oracle can only be approximated, and rules
(R19) and (R20) must be replaced by a rule (or set of rules) for computing resp.
enumerating a subset of all valid FOL-formulas (in particular, these rules must
include equality handling). This is not harmful to “practical completeness”. Rule
sets for arithmetic are available, which—as experience shows—allow to derive
all valid FOL-formulas that occur during the verification of actual programs.

Typically, an approximation of the computation domain oracle contains a
rule for structural induction. In the case of arithmetic, that is rule (R21). This
rule, however, is not only used to approximate the arithmetic oracle but is in-
dispensable for completeness. It not only applies to FOL-formulas but also to

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 633

Table 3. Rules for the modal operators.

Assignment
Γx′

x , x
.= tx

′
x ` φ, ∆x′

x

Γ ` [x := t]φ, ∆

where x′ is new w.r.t. t, φ, Γ,∆

(R22)
Γx′

x , x
.= tx

′
x ` φ, ∆x′

x

Γ ` 〈x := t〉φ, ∆
where x′ is new w.r.t. t, φ, Γ,∆

(R23)

Γ ` φ, ∆ Γx′
x , x

.= tx
′

x ` φ, ∆x′
x

Γ ` [[x := t]]φ, ∆

where x′ is new w.r.t. t, φ, Γ,∆

(R24)
Γx′

x , x
.= tx

′
x ` φx′

x , φ, ∆x′
x

Γ ` 〈〈x := t〉〉φ, ∆
where x′ is new w.r.t. t, φ, Γ,∆

(R25)

Concatenation
Γ ` [α][β]φ, ∆
Γ ` [α;β]φ, ∆

(R26)
Γ ` 〈α〉〈β〉φ, ∆
Γ ` 〈α;β〉φ, ∆ (R27)

Γ ` [[α]]φ, ∆ Γ ` [α][[β]]φ, ∆
Γ ` [[α;β]]φ, ∆

(R28)
Γ ` 〈〈α〉〉φ, 〈α〉〈〈β〉〉φ, ∆

Γ ` 〈〈α;β〉〉φ, ∆ (R29)

If-then-else
Γ, ε ` [α]φ, ∆ Γ, ¬ε ` [β]φ, ∆
Γ ` [if ε then α else β]φ, ∆

(R30)
Γ, ε ` 〈α〉φ, ∆ Γ, ¬ε ` 〈β〉φ, ∆
Γ ` 〈if ε then α else β〉φ, ∆ (R31)

Γ, ε ` [[α]]φ, ∆ Γ, ¬ε ` [[β]]φ, ∆
Γ ` [[if ε then α else β]]φ, ∆

(R32)
Γ, ε ` 〈〈α〉〉φ, ∆ Γ, ¬ε ` 〈〈β〉〉φ, ∆

Γ ` 〈〈if ε then α else β〉〉φ, ∆ (R33)

While
Γ ` Inv , ∆ Inv , ε ` [α]Inv Inv , ¬ε ` φ

Γ ` [while ε do α]φ, ∆

where Inv is an arbitrary DLT-formula

(R34)

Γ ` ε, ∆ Γ ` 〈α〉〈while ε do α〉φ, ∆
Γ ` 〈while ε do α〉φ, ∆ (R35)

Γ ` ¬ε, ∆ Γ ` φ, ∆

Γ ` 〈while ε do α〉φ, ∆ (R36)

Γ ` Inv , ∆ Inv , ε ` [α]Inv Inv , ε ` [[α]]φ Inv , ¬ε ` φ

Γ ` [[while ε do α]]φ, ∆

where Inv is an arbitrary DLT-formula

(R37)

Γ ` ε, ∆ Γ ` 〈α〉〈〈while ε do α〉〉φ, ∆
Γ ` 〈〈while ε do α〉〉φ, ∆ (R38)

Γ, ¬ε ` φ, ∆ Γ, ε ` 〈〈α〉〉φ, ∆
Γ ` 〈〈while ε do α〉〉φ, ∆ (R39)

DLT-formulas containing programs; and it is needed for handling the modalities
〈·〉 and 〈〈·〉〉 when they contain while loops (see Section 4).

Rules for Modalities and Programs. The rules for the modal operators and
the programs they contain are shown in Table 3. As is easy to see, they basically
perform a symbolic program execution.

There is a rule for each combination of program construct (assignment, con-
catenation, if-then-else, while loop) and modality ([·], 〈·〉, [[·]], 〈〈·〉〉). To keep the
description of our calculus compact we only give rules for the case where the
modal formula is on the right side of a sequent. That is sufficient for complete-
ness because using the cut rule (R18) and the rules for negated modalities (R48)
to (R51) (see Table 4), every modal formula on the left side of a sequent can be

634 B. Beckert and S. Schlager

turned into an equivalent formula on the right side of the sequent. For example,
from the proof obligation [[α]]φ ` we get the proof obligation ` ¬[[α]]φ with
the cut rule, which then can be turned into ` 〈〈α〉〉¬φ applying rule (R50).

Rules for Assignments. The rules for the modalities [·] (R22) and 〈·〉 (R23) are
the traditional assignment rules of calculi for first-order DL. They introduce a
new variable x′ representing the old value of x before the assignment x := t is
executed. In the premisses of the assignment rules, both x and x′ occur because
the premisses express the relation between the old and the new value of x without
using an explicit assignment. Since assignments always terminate, there is no
difference between the two rules. Note, that the premiss and the conclusion of
these rules are not necessarily equivalent (as a new symbol is introduced). But
if one is valid then the other is valid as well.

Example 1. Consider the valid sequent x
.= 5 ` 〈x := x+ 1〉x .= 6. Applying

rule (R23) yields the new sequent x′ .= 5, x .= x′ + 1 ` x
.= 6. It can be read

as: “If the old value of x is 5 and its new value is its old value plus 1, then the
new value of x is 6.” This exactly captures the meaning of the original sequent.

Assignments x := t are atomic programs. By definition, their semantics is
a trace consisting of the initial state s and the final state s′ = s{x← vals(t)}.
Therefore, the meaning of [[x := t]]φ is that φ is true in both s and s′, which is
what the two premisses of rule (R24) express. The formula 〈〈x := t〉〉φ, on the
other hand, is true (in s) if φ is true in at least one of the two states. Note, that
the two formulas φx

′
x and φ in the premiss of rule (R25), which express that φ is

true in s resp. s′, are implicitly disjunctively connected.

Example 2. We use rule (R24) to show that x .= 5 ` [[x := x+ 1]]x ≤ 6 is a
valid sequent. This results in the two new proof obligations x .= 5 ` x ≤ 6 and
x′ ≤ 5, x .= x′ + 1 ` x ≤ 6. They state that x ≤ 6 is true in both the initial and
the final state of the assignment.

Let even(x) be an abbreviation for the FOL-formula ∃y (x .= 2 ∗ y). To prove
the validity of ` 〈〈x := x+ 1〉〉even(x), we apply rule (R25) and get the new
proof obligation x .= x′ + 1 ` even(x), even(x′), which is obviously valid.

Rules for Concatenation. Again, the rules for the modalities [·] (R26) and
〈·〉 (R27) are the traditional rules for first-order DL. They are based on the
equivalences [α;β]φ↔ [α][β]φ resp. 〈α;β〉φ↔ 〈α〉〈β〉φ.

In the case of the [[·]] modality, the concatenation rule (R28) branches. To
show that a formula φ is true throughout the execution of α;β, one has to prove
(a) that φ is true throughout the execution of α, i.e. [[α]]φ, and (b) provided α
terminates, that φ is true throughout the execution of β that is started in the
final state of α, i.e. [α][[β]]φ.

The concatenation rule for 〈〈·〉〉 (R29) does not branch. A formula φ is true
at least once during the execution of α;β if (a) it is true at least once during

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 635

the execution of α, or (b) α terminates and φ is true at least once during the
execution of β that is started in the final state of α.2

Rules for If-then-else. The rules for if-then-else conditionals have the same form
for all four modalities, and for the modalities [·] and 〈·〉 they are the same as in
calculi for standard DDL.

Rules for While Loops. The rules for while loops in the modalities [·] and [[·]],
(R34) resp. (R37), use a loop invariant, i.e., a DLT-formula that must be true
before and after each execution of the loop body. Three premisses of (R37) are
the same as the premisses of (R34). The first one expresses that the invariant Inv
holds in the current state, i.e., before the loop is started. The second premiss
expresses that Inv is indeed an invariant, i.e., if it holds before executing the
loop body α, then it holds again if and when α terminates. And the third pre-
miss expresses that φ—the formula that supposedly holds after resp. throughout
executing the loop—is a logical consequence of the invariant and the negation of
the loop condition ε, i.e., is true when the loop terminates. For the [[·]] modality,
this last premiss is only needed for the case that ε is false from the beginning
and the loop body α is never executed. The rule for [[·]] (R37) has an additional
premiss, which requires to show that φ remains true throughout the execution
of α if the invariant is true at the beginning (this latter condition follows from
the other premisses).

Example 3. Let α be the loop while true do x := 0. Then, because α does not
terminate, the sequent x .= 0 ` [[α;x := 1]]x .= 0 is valid. To prove that, we ap-
ply rule (R28), which results in the two new proof obligations x .= 0 ` [[α]]x .= 0
and x

.= 0 ` [α][[x := 1]]x .= 0. Both are easy to derive with the rules for while
loops, namely the former one with rule (R37) and the invariant x .= 0 and the
latter one with rule (R34) and the invariant true.

The modalities 〈·〉 and 〈〈·〉〉 are handled in a different way. Two rules are
provided for each of them. One rule, (R35) resp. (R38), allows us to “unwind”
the loop, i.e., to symbolically execute it once, provided that the loop condition ε is
true in the current state. The other rule, (R36) resp. (R39), is used if “unwinding”
the loop is not useful. For the 〈·〉 modality that is the case if ε is false and the
loop terminates immediately. Rule (R39) for the 〈〈·〉〉 modality applies in case
the formula φ—which supposedly is true at least once during the execution of
the loop—becomes true before or during the first execution of the loop body.
The rules for 〈·〉 and 〈〈·〉〉 only work in combination with the induction rule, as
the following example demonstrates.
2 For non-deterministic versions of DL, rule (R29) is only sound provided that the

following semantics is chosen for the 〈〈·〉〉 modality: 〈〈α〉〉φ is true iff φ is true at least
once in some of the (several) traces of α. If, however, a non-deterministic semantics
is chosen where φ must be true at least once in every trace of α (as Pratt did for
the propositional case [11]), then rule (R29) is not correct, and indeed we failed to
find a sound rule for that kind of semantics.

636 B. Beckert and S. Schlager

Table 4. Miscellaneous rules.

Generalisation
φ ` ψ

[α]φ ` [α]ψ
(R40)

φ ` ψ

〈α〉φ ` 〈α〉ψ (R41)
φ ` ψ

[[α]]φ ` [[α]]ψ
(R42)

φ ` ψ

〈〈α〉〉φ ` 〈〈α〉〉ψ (R43)

Quantifier/modality rules
Γ, ∀x1 . . . ∀xk φ, [α]φ ` ∆

Γ, ∀x1 . . . ∀xk φ ` ∆

where Var(α) ⊆ {x1, . . . , xk}

(R44)
Γ ` 〈α〉φ, ∃x1 . . . ∃xk φ, ∆

Γ ` ∃x1 . . . ∃xk φ, ∆

where Var(α) ⊆ {x1, . . . , xk}

(R45)

Γ, ∀x1 . . . ∀xk φ, [[α]]φ ` ∆

Γ, ∀x1 . . . ∀xk φ ` ∆

where Var(α) ⊆ {x1, . . . , xk}

(R46)
Γ ` 〈〈α〉〉φ, ∃x1 . . . ∃xk φ, ∆

Γ ` ∃x1 . . . ∃xk φ, ∆

where Var(α) ⊆ {x1, . . . , xk}

(R47)

Rules for negated modalities
Γ ` 〈α〉¬φ, ∆
Γ ` ¬[α]φ, ∆

(R48)
Γ ` [α]¬φ, ∆
Γ ` ¬〈α〉φ, ∆ (R49)

Γ ` 〈〈α〉〉¬φ, ∆
Γ ` ¬[[α]]φ, ∆

(R50)
Γ ` [[α]]¬φ, ∆
Γ ` ¬〈〈α〉〉φ, ∆ (R51)

Example 4. Consider the sequent x .= 0 ` 〈〈while true do x := x+ 1〉〉x .= k. It
states that, if the value of x is 0 initially, then during the execution of the
non-terminating loop, x will at least once have the value k. To show that this
sequent is valid, we first use the induction rule to prove that ` ∀nφ(n) is
valid, where φ(n) = (x ≤ k ∧ n+ x

.= k)→ 〈〈while true do x := x+ 1〉〉x .= k,
from which then the original proof obligation can be derived instantiating n
with k. The first premiss of the induction rule, ` φ(0), can easily be derived
with rule (R39) as x .= k is immediately true in case n = 0. The second premiss,
φ(n) ` φ(n+ 1), can be derived by first applying the cut rule to distinguish
the cases x < k and x .= k. In the first case, the unwind rule (R38) can be used
successfully; and the second case is again easily covered with rule (R39).

Miscellaneous Other Rules. There are three types of miscellaneous other
rules (see Table 4). (a) The generalisation rules (R40) to (R43) permit to de-
rive Op φ ` Op ψ from φ ` ψ where Op is any of the four modal operators.
(b) Rules (R44) to (R47) allow to replace (universal) quantifications by modal-
ities. They are similar to the quantifier instantiation rules (R13) and (R15) and
are based on the fact that, for example, [[α(x)]]φ is true in a state s if ∀xφ is
true in s and x is the only variable in α(x). (c) Rules (R48) to (R51) implement
the equivalences ¬[α]φ↔ 〈α〉¬φ and ¬[[α]]φ↔ 〈〈α〉〉¬φ.

5 Soundness and Relative Completeness

Soundness of the calculus CDLT (Corollary 1) is based on the following theorem,
which states that all rules preserve validity of the derived sequents.

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 637

Theorem 1. For all rule schemata of the calculus CDLT, (R1) to (R51), the
following holds: If all premisses of a rule schema instance are valid sequents,
then its conclusion is a valid sequent.

Corollary 1. If a sequent Γ ` ∆ is derivable with the calculus CDLT, then it
is valid, i.e.,

∧
Γ → ∨

∆ is a valid formula.

Proving Theorem 1 is not difficult. The proof is, however, quite large as soundness
has to be shown separately for each rule. For the assignment rules, the proof is
based on a substitution lemma and is technically involved.

The calculus CDLT is relatively complete; that is, it is complete up to the
handling of the domain of computation (the data structures). It is complete if
an oracle rule for the domain is available—in our case one of the oracle rules for
arithmetic, (R19) and (R20). If the domain is extended with other data types,
CDLT remains relatively complete; and it is still complete if rules for handling
the extended domain of computation are added.

Theorem 2. If a sequent is valid, then it is derivable with CDLT.

Corollary 2. If φ is a valid DLT-formula, then the sequent ` φ is derivable.

Due to space restrictions, the proof of Theorem 2, which is quite complex,
cannot be given here (it can be found in [13]). The proof technique is the same
as that used by Harel [4] to prove relative completeness of his sequent calculus
for first-order DL. The following lemmata are central to the completeness proof.

Lemma 1. For every DLT-formula φDLT there is an (arithmetical) FOL-for-
mula φFOL that is equivalent to φDLT, i.e., vals(φDLT) = vals(φFOL) for all
states s.

The above lemma states that DLT is not more expressive than first-order
arithmetic. This holds as arithmetic—our domain of computation—is expressive
enough to encode the behaviour of programs. In particular, using Gödelisation,
arithmetic allows one to encode program states (i.e., the values of all the variables
occurring in a program) and finite traces into a single number. Note that the
lemma states a property of the logic DLT that is independent of the calculus.

Lemma 1 implies that a DLT-formula φDLT could be decided by construct-
ing an equivalent FOL-formula φFOL and then invoking the computation domain
oracle—if such an oracle were actually available. But even with a good approx-
imation of an arithmetic oracle, that is not practical (the formula φFOL would
be too complex to prove automatically or interactively). And, indeed, the calcu-
lus CDLT does not work that way.

It may be surprising that the (relative) completeness of CDLT requires an
expressive computation domain and is lost if a simpler domain and less expressive
data structures are used. The reason is that in a simpler domain it may not be
possible to express the required invariants resp. induction hypotheses to handle
while loops.

638 B. Beckert and S. Schlager

Lemma 2. Let φ and ψ be FOL-formulas, let α be a program, and let Mα be
any of the modalities [α], 〈α〉, [[α]], 〈〈α〉〉.

If the sequent φ ` Mα ψ is valid, then it is derivable with CDLT.

This lemma is at the core of the completeness of CDLT. It is proven by induction
on the complexity of the program α, and the proof would not go through if the
calculus would lack important rules (not all rules are indispensable; some can be
derived from other rules, they are included for convenience.).

Besides Lemmata 1 and 2, the completeness proof makes use of the fact that
the calculus has the necessary rules (a) for the operators of classical logic (in par-
ticular all propositional tautologies can be derived), and (b) for generalisation,
(R40) to (R43).

6 Extended Example

Consider the program “while true do if y
.= 1 then α else β” where α abbre-

viates the sub-program “x := x+ 1; if x
.= 2 then y := 0 else y := 1” and β

stands for “x := 0; y := 1”. The program consists of a non-terminating while
loop. The loop body changes the value of x between 0 and 2 and the value of y
between 0 and 1. We want to prove that 0 ≤ x ≤ 2 is true in all states reached
by this program, if it is started in a state where vals(x) = 0 and vals(y) = 1
(we use 0 ≤ x ≤ 2 as an abbreviation for 0 ≤ x ∧ x ≤ 2). The proof is shown in
Figure 1. Its initial proof obligation is the sequent (1). First, the while loop is
eliminated applying rule (R37) with the invariant

Inv := 0 ≤ y ≤ 1 ∧ (y .= 0 → x
.= 1 ∨ x

.= 2) ∧ (y .= 1 → x
.= 0) .

The formula 0 ≤ x ≤ 2, which is a logical consequence of Inv, does not describe
the behaviour of the loop in sufficient detail and, therefore, is not a suitable in-
variant itself. The result of applying rule (R37) to (1) are the four new proof obli-
gations (2)–(5). Proof obligation (2) can immediately be derived with rule (R19).
And, applying rule (R5) to (5) yields a sequent (5′) with true on the right, which
can be derived with rule (R2).

In the sequel, we concentrate on the proof of (4). Proof obligation (3) can be
derived in a similar way; its derivation is omitted due to lack of space.

The next step is the application of rule (R32) to (4) to symbolically execute
the if-then-else statement. The result are the two proof obligations (6) and (7).
Eliminating the concatenations in (6) and (7) with applications of rule (R28)
yields (8) and (9) resp. (10) and (11). Next, we simplify (and weaken) the left
sides of (8)–(11) with the arithmetic rule (R20) (this is not really necessary but
the sequents get shorter and easier to understand). The result are the sequents
(12)–(15), respectively. The derivations of proof obligations (12), (14), and (15)
need no further explanation and are shown in Figure 1. To derive (13), we ap-
ply (R22) and get (16). The if-then-else statement is symbolically executed with
rule (R32), which results in (17) and (18). Proof obligation (17) is derived by
applying rule (R24), which yields (19) and (20). It is easy to check that (19)

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 639

∗
x
.= 0 ` 0 ≤ x ≤ 2

(R19) ∗
x′ .= 0, x .= x′ + 1 ` 0 ≤ x ≤ 2

(R19)

x
.= 0 ` [[x := x+ 1]]0 ≤ x ≤ 2 (12)

(R24)

∗
x
.= 0 ` 0 ≤ x ≤ 2

(R19) ∗
x
.= 0, y .= 1 ` 0 ≤ x ≤ 2

(R19)

x
.= 0 ` [[y := 1]]0 ≤ x ≤ 2

(R24)

` [x := 0][[y := 1]]0 ≤ x ≤ 2 (15)
(R22)

∗
x
.= 1 ∨ x

.= 2 ` 0 ≤ x ≤ 2
(R19) ∗

x′ .= 1 ∨ x′ .= 2, x .= 0 ` 0 ≤ x ≤ 2
(R19)

x
.= 1 ∨ x

.= 2 ` [[x := 0]]0 ≤ x ≤ 2 (14)
(R24)

∗
(2)

(R19)

∗....
(3)

(12)
(8)

(R20)

∗
(19)

(R19) ∗
(20)

(R19)

(17)
(R24)

∗
(19′)

(R19) ∗
(20′)

(R19)

(18)
(R24)

(16)
(R32)

(13)
(R22)

(9)
(R20)

(6)
(R28)

(14)
(10)

(R20)
(15)
(11)

(R20)

(7)
(R28)

(4)
(R32)

∗
(5′)

(R2)

(5)
(R5)

(1)
(R37)

x
.= 0, y

.= 1 ` [[while true do if y
.= 1 then α else β]]0 ≤ x ≤ 2 (1)

x
.= 0, y

.= 1 ` Inv (2)

Inv, true ` [if y
.= 1 then α else β]Inv (3)

Inv, true ` [[if y
.= 1 then α else β]]0 ≤ x ≤ 2 (4)

Inv, ¬true ` 0 ≤ x ≤ 2. (5)

Inv, true, y
.= 1 ` [[x :=x + 1; if x

.= 2 then y := 0 else y := 1]]0 ≤ x ≤ 2 (6)

Inv, true, ¬y
.= 1 ` [[x := 0; y := 1]]0 ≤ x ≤ 2 (7)

Inv, true, y
.= 1 ` [[x :=x + 1]]0 ≤ x ≤ 2 (8)

Inv, true, y
.= 1 ` [x :=x + 1][[if x

.= 2 then y := 0 else y := 1]]0 ≤ x ≤ 2 (9)

Inv, true, ¬y
.= 1 ` [[x := 0]]0 ≤ x ≤ 2 (10)

Inv, true, ¬y
.= 1 ` [x := 0][[y := 1]]0 ≤ x ≤ 2. (11)

x
.= 0 ` [[x :=x + 1]]0 ≤ x ≤ 2 (12)

x
.= 0 ` [x :=x + 1][[if x

.= 2 then y := 0 else y := 1]]0 ≤ x ≤ 2 (13)

x
.= 1 ∨ x

.= 2 ` [[x := 0]]0 ≤ x ≤ 2 (14)

` [x := 0][[y := 1]]0 ≤ x ≤ 2 (15)

x′ .= 0, x
.= x′ + 1 ` [[if x

.= 2 then y := 0 else y := 1]]0 ≤ x ≤ 2 (16)

x′ .= 0, x
.= x′ + 1, x

.= 2 ` [[y := 0]]0 ≤ x ≤ 2 (17)

x′ .= 0, x
.= x′ + 1, ¬x

.= 2 ` [[y := 1]]0 ≤ x ≤ 2 (18)

x′ .= 0, x
.= x′ + 1, x

.= 2 ` 0 ≤ x ≤ 2 (19)

x′ .= 0, x
.= x′ + 1, x

.= 2, y
.= 0 ` 0 ≤ x ≤ 2 (20)

Fig. 1. The derivation described in Section 6.

640 B. Beckert and S. Schlager

and (20) are valid FOL-sequents and can therefore be derived with the oracle
rule for arithmetic (R19).

Applying rule (R24) to (18) yields similar FOL-sequents (19′) and (20′),
which differ from (19) and (20) in that they contain ¬x .= 2 instead of x .= 2 and
y
.= 1 instead of y .= 0. They, too, can be derived with the oracle (R19).

7 Future Work

Future work includes an implementation of our calculus CDLT, which would allow
us to carry out case studies going beyond the simple examples shown in this
paper and to test the usefulness of DLT in practice.

A useful extension of CDLT for practical applications may be special rules for
formulas of the form [α]φ ∧ [[α]]ψ, such that splitting the two conjuncts is avoided
and they do not have to be handled in separate—but similar—sub-proofs.

Also, it may be useful to consider (a) a non-deterministic version of DLT,
and (b) extensions of DLT with further modalities such as “α preserves φ”,
which expresses that, once φ becomes true in the trace of α, it remains true
throughout the rest of the trace. It seems, however, to be difficult to give a
(relatively) complete calculus for this modality.

Acknowledgement. We thank W. Ahrendt, E. Habermalz, W. Menzel, and
P. H. Schmitt for fruitful discussions and comments.

References

1. W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel,
and P. H. Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In M. Ojeda-Aciego, I. P. de Guzman, G. Brewka, and L. M.
Pereira, editors, Proceedings, Logics in Artificial Intelligence (JELIA), Malaga,
Spain, LNCS 1919. Springer, 2000.

2. K. R. Apt. Ten years of Hoare logic: A survey – part I. ACM Transactions on
Programming Languages and Systems, 1981.

3. B. Beckert. A Dynamic Logic for the formal verification of Java Card programs. In
Proceedings, Java Card Workshop (JCW), Cannes, France, LNCS 2014. Springer,
2001.

4. D. Harel. First-order Dynamic Logic. LNCS 68. Springer, 1979.
5. D. Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of

Philosophical Logic, Volume II: Extensions of Classical Logic. Reidel, 1984.
6. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
7. M. Heisel, W. Reif, and W. Stephan. A Dynamic Logic for program verification. In

A. Meyer and M. Taitslin, editors, Proceedings, Logic at Botic, Pereslavl-Zalessky,
Russia, LNCS 363. Springer, 1989.

8. D. Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, and W. Stephan. De-
duction in the Verification Support Environment (VSE). In M.-C. Gaudel and
J. Woodcock, editors, Proceedings, International Symposium of Formal Methods
Europe (FME), Oxford, UK, LNCS 1051. Springer, 1996.

A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities 641

9. D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 14, pages 89–133. Elsevier, 1990.

10. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings, 18th
IEEE Symposium on Foundation of Computer Science, pages 109–121, 1977.

11. V. R. Pratt. Process logic: Preliminary report. In Proceedings, ACM Symposium
on Principles of Programming Languages (POPL), San Antonio/TX, USA, 1979.

12. W. Reif. The KIV-approach to software verification. In M. Broy and S. Jähnichen,
editors, KORSO: Methods, Languages, and Tools for the Construction of Correct
Software – Final Report, LNCS 1009. Springer, 1995.

13. S. Schlager. Erweiterung der Dynamischen Logik um temporallogische Operatoren.
Studienarbeit, Fakultät für Informatik, Universität Karlsruhe, 2000. In German.
Available at: ftp://i12ftp.ira.uka.de/pub/beckert/schlager.ps.gz.

	Introduction
	Syntax of DL with Trace Modalities
	Semantics of DL with Trace Modalities
	A Sequent Calculus for DL with Trace Modalities
	Soundness and Relative Completeness
	Extended Example
	Future Work

